Upload 2 files
Browse files- app.py +108 -0
- requirements.txt +5 -0
app.py
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""Final WebApp using Gradio.ipynb
|
3 |
+
|
4 |
+
Automatically generated by Colab.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1a5-p_KZd9Hk0tsKZ_JoqoYeRD3XOQtRK
|
8 |
+
|
9 |
+
# **Task 2 - Web App Development with Gradio**
|
10 |
+
|
11 |
+
## **Gradio Interface for OCR Application**
|
12 |
+
|
13 |
+
In this notebook, I created an interactive web application using Gradio to facilitate the OCR process and allow users to perform keyword searches on the extracted text.
|
14 |
+
"""
|
15 |
+
|
16 |
+
!pip install gradio
|
17 |
+
!pip install -q tiktoken verovio
|
18 |
+
!pip install pytesseract
|
19 |
+
|
20 |
+
"""**Library Imports**:
|
21 |
+
|
22 |
+
- In addition to libraries from the first notebook, I imported `gradio` to build the user interface for the application.
|
23 |
+
"""
|
24 |
+
|
25 |
+
import cv2
|
26 |
+
from pytesseract import pytesseract
|
27 |
+
from transformers import AutoModel, AutoTokenizer
|
28 |
+
import gradio as gr
|
29 |
+
|
30 |
+
"""**Model and Tesseract Configuration**:
|
31 |
+
- Similar to the first notebook, I loaded the GOT2 model for English text and configured Tesseract for Hindi text.
|
32 |
+
"""
|
33 |
+
|
34 |
+
tokenizer_eng = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True)
|
35 |
+
model_eng = AutoModel.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True).eval().cuda()
|
36 |
+
|
37 |
+
pytesseract.tesseract_cmd = '/usr/bin/tesseract'
|
38 |
+
tesseract_config = '--oem 3 --psm 6 -l hin'
|
39 |
+
|
40 |
+
"""**Perform OCR Function**:
|
41 |
+
- The `perform_ocr` function was adapted to handle image input from the Gradio interface. This function processes the uploaded image based on the selected language and returns the extracted English and Hindi texts.
|
42 |
+
"""
|
43 |
+
|
44 |
+
def perform_ocr(img, language):
|
45 |
+
|
46 |
+
img_path = "/tmp/uploaded_image.png"
|
47 |
+
img.save(img_path)
|
48 |
+
|
49 |
+
res_eng = ""
|
50 |
+
res_hin = ""
|
51 |
+
|
52 |
+
if language in ["English", "Both"]:
|
53 |
+
res_eng = model_eng.chat(tokenizer_eng, img_path, ocr_type='ocr')
|
54 |
+
|
55 |
+
if language in ["Hindi", "Both"]:
|
56 |
+
img_cv = cv2.imread(img_path)
|
57 |
+
res_hin = pytesseract.image_to_string(img_cv, config=tesseract_config)
|
58 |
+
|
59 |
+
return res_eng, res_hin
|
60 |
+
|
61 |
+
"""**Keyword Search Functionality**:
|
62 |
+
- A new function, `ocr_and_search`, was implemented to allow users to search for keywords within the extracted text. It checks for keyword matches in both English and Hindi texts, providing appropriate feedback.
|
63 |
+
"""
|
64 |
+
|
65 |
+
def ocr_and_search(image, language, keyword):
|
66 |
+
|
67 |
+
english_text, hindi_text = perform_ocr(image, language)
|
68 |
+
|
69 |
+
extracted_english = f"Extracted English Text:\n{english_text}" if english_text else "No English text extracted."
|
70 |
+
extracted_hindi = f"Extracted Hindi Text:\n{hindi_text}" if hindi_text else "No Hindi text extracted."
|
71 |
+
|
72 |
+
# Search for the keyword in the extracted text
|
73 |
+
search_results = []
|
74 |
+
if keyword:
|
75 |
+
|
76 |
+
if language in ["English", "Both"] and keyword.lower() in english_text.lower():
|
77 |
+
search_results.append(f"Keyword '{keyword}' found in English text.")
|
78 |
+
|
79 |
+
if language in ["Hindi", "Both"] and keyword.lower() in hindi_text.lower():
|
80 |
+
search_results.append(f"Keyword '{keyword}' found in Hindi text.")
|
81 |
+
|
82 |
+
search_output = "\n".join(search_results) if search_results else "No matches found."
|
83 |
+
|
84 |
+
return extracted_english, extracted_hindi, search_output
|
85 |
+
|
86 |
+
"""**Gradio Interface Setup**:
|
87 |
+
- The user interface is constructed using Gradio's Blocks API, allowing users to upload images, select the desired language for OCR, and enter a keyword for search.
|
88 |
+
- The outputs are displayed in separate text boxes for extracted English text, extracted Hindi text, and search results.
|
89 |
+
"""
|
90 |
+
|
91 |
+
# Gradio
|
92 |
+
with gr.Blocks() as app:
|
93 |
+
gr.Markdown("### OCR Application")
|
94 |
+
image_input = gr.Image(type="pil", label="Upload Image")
|
95 |
+
language_selection = gr.Radio(choices=["English", "Hindi", "Both"], label="Select Language")
|
96 |
+
keyword_input = gr.Textbox(placeholder="Enter keyword to search", label="Keyword Search")
|
97 |
+
output_english = gr.Textbox(label="Extracted English Text", interactive=False)
|
98 |
+
output_hindi = gr.Textbox(label="Extracted Hindi Text", interactive=False)
|
99 |
+
output_search = gr.Textbox(label="Search Results", interactive=False)
|
100 |
+
|
101 |
+
submit_button = gr.Button("Submit")
|
102 |
+
submit_button.click(fn=ocr_and_search, inputs=[image_input, language_selection, keyword_input], outputs=[output_english, output_hindi, output_search])
|
103 |
+
|
104 |
+
"""**Application Launch**:
|
105 |
+
- Finally, the Gradio app is launched, making the OCR application accessible for user interaction. This enables real-time testing and usability of the OCR functionalities implemented in the previous notebook.
|
106 |
+
"""
|
107 |
+
|
108 |
+
app.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
opencv-python
|
3 |
+
pytesseract
|
4 |
+
transformers
|
5 |
+
langdetect
|