Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -39,9 +39,168 @@ def load_model():
|
|
39 |
logger.error(f"Error loading model: {str(e)}")
|
40 |
raise
|
41 |
|
42 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
iface = gr.Interface(
|
46 |
fn=gradio_interface,
|
47 |
inputs=[
|
@@ -71,8 +230,6 @@ if __name__ == "__main__":
|
|
71 |
|
72 |
|
73 |
|
74 |
-
|
75 |
-
|
76 |
# import requests
|
77 |
# import gradio as gr
|
78 |
# import logging
|
|
|
39 |
logger.error(f"Error loading model: {str(e)}")
|
40 |
raise
|
41 |
|
42 |
+
# Preprocess image for model
|
43 |
+
def preprocess_image(image):
|
44 |
+
try:
|
45 |
+
# Convert to numpy array if needed
|
46 |
+
if isinstance(image, Image.Image):
|
47 |
+
image = np.array(image)
|
48 |
+
|
49 |
+
# Ensure image has 3 channels (RGB)
|
50 |
+
if len(image.shape) == 2: # Grayscale image
|
51 |
+
image = np.stack((image,) * 3, axis=-1)
|
52 |
+
elif len(image.shape) == 3 and image.shape[2] == 4: # RGBA image
|
53 |
+
image = image[:, :, :3]
|
54 |
+
|
55 |
+
# Resize image to match model's expected input shape
|
56 |
+
target_size = (224, 224) # Change this to match your model's input size
|
57 |
+
image = tf.image.resize(image, target_size)
|
58 |
+
|
59 |
+
# Normalize pixel values
|
60 |
+
image = image / 255.0
|
61 |
+
|
62 |
+
# Add batch dimension
|
63 |
+
image = np.expand_dims(image, axis=0)
|
64 |
+
|
65 |
+
return image
|
66 |
+
except Exception as e:
|
67 |
+
logger.error(f"Error preprocessing image: {str(e)}")
|
68 |
+
raise
|
69 |
+
|
70 |
+
def create_chat_session():
|
71 |
+
try:
|
72 |
+
create_session_url = 'https://api.on-demand.io/chat/v1/sessions'
|
73 |
+
create_session_headers = {
|
74 |
+
'apikey': api_key,
|
75 |
+
'Content-Type': 'application/json'
|
76 |
+
}
|
77 |
+
create_session_body = {
|
78 |
+
"pluginIds": [],
|
79 |
+
"externalUserId": external_user_id
|
80 |
+
}
|
81 |
+
|
82 |
+
response = requests.post(create_session_url, headers=create_session_headers, json=create_session_body)
|
83 |
+
response.raise_for_status()
|
84 |
+
return response.json()['data']['id']
|
85 |
+
|
86 |
+
except requests.exceptions.RequestException as e:
|
87 |
+
logger.error(f"Error creating chat session: {str(e)}")
|
88 |
+
raise
|
89 |
+
|
90 |
+
def submit_query(session_id, query, image_analysis=None):
|
91 |
+
try:
|
92 |
+
submit_query_url = f'https://api.on-demand.io/chat/v1/sessions/{session_id}/query'
|
93 |
+
submit_query_headers = {
|
94 |
+
'apikey': api_key,
|
95 |
+
'Content-Type': 'application/json'
|
96 |
+
}
|
97 |
+
|
98 |
+
# Include image analysis in the query if available
|
99 |
+
query_with_image = query
|
100 |
+
if image_analysis:
|
101 |
+
query_with_image += f"\n\nImage Analysis Results: {image_analysis}"
|
102 |
+
|
103 |
+
structured_query = f"""
|
104 |
+
Based on the following patient information and image analysis, provide a detailed medical analysis in JSON format:
|
105 |
+
{query_with_image}
|
106 |
+
Return only valid JSON with these fields:
|
107 |
+
- diagnosis_details
|
108 |
+
- probable_diagnoses (array)
|
109 |
+
- treatment_plans (array)
|
110 |
+
- lifestyle_modifications (array)
|
111 |
+
- medications (array of objects with name and dosage)
|
112 |
+
- additional_tests (array)
|
113 |
+
- precautions (array)
|
114 |
+
- follow_up (string)
|
115 |
+
- image_findings (object with prediction and confidence)
|
116 |
+
"""
|
117 |
+
|
118 |
+
submit_query_body = {
|
119 |
+
"endpointId": "predefined-openai-gpt4o",
|
120 |
+
"query": structured_query,
|
121 |
+
"pluginIds": ["plugin-1712327325", "plugin-1713962163"],
|
122 |
+
"responseMode": "sync"
|
123 |
+
}
|
124 |
+
|
125 |
+
response = requests.post(submit_query_url, headers=submit_query_headers, json=submit_query_body)
|
126 |
+
response.raise_for_status()
|
127 |
+
return response.json()
|
128 |
+
|
129 |
+
except requests.exceptions.RequestException as e:
|
130 |
+
logger.error(f"Error submitting query: {str(e)}")
|
131 |
+
raise
|
132 |
+
|
133 |
+
def extract_json_from_answer(answer):
|
134 |
+
"""Extract and clean JSON from the LLM response"""
|
135 |
+
try:
|
136 |
+
return json.loads(answer)
|
137 |
+
except json.JSONDecodeError:
|
138 |
+
try:
|
139 |
+
# Find the first occurrence of '{' and last occurrence of '}'
|
140 |
+
start_idx = answer.find('{')
|
141 |
+
end_idx = answer.rfind('}') + 1
|
142 |
+
if start_idx != -1 and end_idx != 0:
|
143 |
+
json_str = answer[start_idx:end_idx]
|
144 |
+
return json.loads(json_str)
|
145 |
+
except (json.JSONDecodeError, ValueError):
|
146 |
+
logger.error("Failed to parse JSON from response")
|
147 |
+
raise
|
148 |
+
|
149 |
+
def format_prediction(prediction):
|
150 |
+
"""Format model prediction into a standardized structure"""
|
151 |
+
try:
|
152 |
+
# Adjust this based on your model's output format
|
153 |
+
confidence = float(prediction[0][0])
|
154 |
+
return {
|
155 |
+
"prediction": "abnormal" if confidence > 0.5 else "normal",
|
156 |
+
"confidence": round(confidence * 100, 2)
|
157 |
+
}
|
158 |
+
except Exception as e:
|
159 |
+
logger.error(f"Error formatting prediction: {str(e)}")
|
160 |
+
raise
|
161 |
|
162 |
+
# Initialize the model
|
163 |
+
try:
|
164 |
+
model = load_model()
|
165 |
+
except Exception as e:
|
166 |
+
logger.error(f"Failed to initialize model: {str(e)}")
|
167 |
+
model = None
|
168 |
+
|
169 |
+
def gradio_interface(patient_info, image):
|
170 |
+
try:
|
171 |
+
if model is None:
|
172 |
+
raise ValueError("Model not properly initialized")
|
173 |
+
|
174 |
+
# Process image if provided
|
175 |
+
image_analysis = None
|
176 |
+
if image is not None:
|
177 |
+
# Preprocess image
|
178 |
+
processed_image = preprocess_image(image)
|
179 |
+
|
180 |
+
# Get model prediction
|
181 |
+
prediction = model.predict(processed_image)
|
182 |
+
|
183 |
+
# Format prediction results
|
184 |
+
image_analysis = format_prediction(prediction)
|
185 |
+
|
186 |
+
# Create chat session and submit query
|
187 |
+
session_id = create_chat_session()
|
188 |
+
llm_response = submit_query(session_id, patient_info,
|
189 |
+
json.dumps(image_analysis) if image_analysis else None)
|
190 |
+
|
191 |
+
if not llm_response or 'data' not in llm_response or 'answer' not in llm_response['data']:
|
192 |
+
raise ValueError("Invalid response structure from LLM")
|
193 |
+
|
194 |
+
# Extract and clean JSON from the response
|
195 |
+
json_data = extract_json_from_answer(llm_response['data']['answer'])
|
196 |
+
|
197 |
+
# Format output for better readability
|
198 |
+
return json.dumps(json_data, indent=2)
|
199 |
+
|
200 |
+
except Exception as e:
|
201 |
+
logger.error(f"Error in gradio_interface: {str(e)}")
|
202 |
+
return json.dumps({"error": str(e)}, indent=2)
|
203 |
+
|
204 |
iface = gr.Interface(
|
205 |
fn=gradio_interface,
|
206 |
inputs=[
|
|
|
230 |
|
231 |
|
232 |
|
|
|
|
|
233 |
# import requests
|
234 |
# import gradio as gr
|
235 |
# import logging
|