Spaces:
Sleeping
Sleeping
yash001010
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -4,6 +4,7 @@ from langchain_community.vectorstores import Chroma
|
|
4 |
from langchain_community.embeddings import HuggingFaceBgeEmbeddings
|
5 |
from groq import Groq
|
6 |
from dotenv import load_dotenv
|
|
|
7 |
|
8 |
# Initialize Streamlit page configuration
|
9 |
st.set_page_config(page_title="Medical Knowledge Assistant", layout="wide")
|
@@ -29,125 +30,117 @@ if not api_key:
|
|
29 |
# Initialize the app
|
30 |
st.title("Medical Knowledge Assistant")
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
model_kwargs = {'device': 'cpu'}
|
36 |
-
encode_kwargs = {'normalize_embeddings': False}
|
37 |
-
embeddings = HuggingFaceBgeEmbeddings(
|
38 |
-
model_name=model_name,
|
39 |
-
model_kwargs=model_kwargs,
|
40 |
-
encode_kwargs=encode_kwargs
|
41 |
-
)
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
-
|
48 |
-
|
49 |
-
st.
|
50 |
-
|
51 |
-
|
52 |
-
with st.sidebar:
|
53 |
-
st.write("API Key Loaded:", "Yes" if api_key else "No")
|
54 |
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
persist_directory=persist_directory,
|
65 |
-
embedding_function=embeddings
|
66 |
-
)
|
67 |
-
except Exception as e:
|
68 |
-
st.error(f"Error loading vector store: {e}")
|
69 |
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
# Initialize Groq client
|
78 |
-
client = Groq(api_key=api_key)
|
79 |
|
80 |
-
|
81 |
-
|
82 |
|
83 |
-
|
84 |
-
|
85 |
-
# Retrieve relevant documents
|
86 |
-
docs = retriever.get_relevant_documents(query)
|
87 |
-
context = "\n".join([doc.page_content for doc in docs])
|
88 |
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
"role": "system",
|
95 |
-
"content": (
|
96 |
-
"You are a knowledgeable medical assistant. For any medical term or disease, include comprehensive information covering: "
|
97 |
-
"definitions, types, historical background, major theories, known causes, and contributing risk factors. "
|
98 |
-
"Explain the genesis or theories on its origin, if applicable. Use a structured, thorough approach and keep language accessible. "
|
99 |
-
"provide symptoms, diagnosis, and treatment and post operative care , address all with indepth explanation , with specific details and step-by-step processes where relevant. "
|
100 |
-
"If the context does not adequately cover the user's question, respond with: 'I cannot provide an answer based on the available medical dataset.'"
|
101 |
-
)
|
102 |
-
},
|
103 |
-
{
|
104 |
-
"role": "system",
|
105 |
-
"content": (
|
106 |
-
"If the user asks for a medical explanation, ensure accuracy, don't include layman's terms if complex terms are used, "
|
107 |
-
"and organize responses in a structured way."
|
108 |
-
)
|
109 |
-
},
|
110 |
-
{
|
111 |
-
"role": "system",
|
112 |
-
"content": (
|
113 |
-
"When comparing two terms or conditions, provide a clear, concise, and structured comparison. Highlight key differences in their "
|
114 |
-
"definitions, symptoms, causes, diagnoses, and treatments with indepth explanation of each. If relevant, include any overlapping characteristics."
|
115 |
-
)
|
116 |
-
},
|
117 |
-
{
|
118 |
-
"role": "user",
|
119 |
-
"content": f"{context}\n\nQ: {query}\nA:"
|
120 |
-
}
|
121 |
-
],
|
122 |
-
temperature=0.7,
|
123 |
-
max_tokens=3000,
|
124 |
-
stream=True
|
125 |
-
)
|
126 |
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
|
152 |
-
|
153 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
from langchain_community.embeddings import HuggingFaceBgeEmbeddings
|
5 |
from groq import Groq
|
6 |
from dotenv import load_dotenv
|
7 |
+
import requests
|
8 |
|
9 |
# Initialize Streamlit page configuration
|
10 |
st.set_page_config(page_title="Medical Knowledge Assistant", layout="wide")
|
|
|
30 |
# Initialize the app
|
31 |
st.title("Medical Knowledge Assistant")
|
32 |
|
33 |
+
# Google Drive file ID (use your own file ID)
|
34 |
+
file_id = '1lVlF8dYsNFPzrNGqn7jiJos7qX49jmi0' # Replace with your Google Drive file ID
|
35 |
+
destination_path = '/tmp/Embedded_Med_books' # Temporary location to store the vector store
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
+
# Function to download file from Google Drive
|
38 |
+
def download_from_drive(file_id, destination_path):
|
39 |
+
"""Download the vector store file from Google Drive."""
|
40 |
+
url = f'https://drive.google.com/uc?export=download&id={file_id}'
|
41 |
+
response = requests.get(url)
|
42 |
+
if response.status_code == 200:
|
43 |
+
with open(destination_path, 'wb') as f:
|
44 |
+
f.write(response.content)
|
45 |
+
return destination_path
|
46 |
+
else:
|
47 |
+
st.error("Failed to download the file from Google Drive.")
|
48 |
+
return None
|
49 |
|
50 |
+
# Check if the vector store file exists, and download it if necessary
|
51 |
+
if not os.path.exists(destination_path):
|
52 |
+
st.warning("Downloading the vector store from Google Drive...")
|
53 |
+
download_from_drive(file_id, destination_path)
|
54 |
+
st.success("Vector store downloaded successfully!")
|
|
|
|
|
55 |
|
56 |
+
# Set up embeddings
|
57 |
+
model_name = "BAAI/bge-large-en"
|
58 |
+
model_kwargs = {'device': 'cpu'}
|
59 |
+
encode_kwargs = {'normalize_embeddings': False}
|
60 |
+
embeddings = HuggingFaceBgeEmbeddings(
|
61 |
+
model_name=model_name,
|
62 |
+
model_kwargs=model_kwargs,
|
63 |
+
encode_kwargs=encode_kwargs
|
64 |
+
)
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
+
# Load the vector store from the downloaded file
|
67 |
+
vector_store = Chroma(
|
68 |
+
persist_directory=destination_path,
|
69 |
+
embedding_function=embeddings
|
70 |
+
)
|
71 |
+
retriever = vector_store.as_retriever(search_kwargs={'k': 1})
|
|
|
|
|
|
|
72 |
|
73 |
+
# Initialize Groq client
|
74 |
+
client = Groq(api_key=api_key)
|
75 |
|
76 |
+
# Streamlit input
|
77 |
+
query = st.text_input("Enter your medical question here:")
|
|
|
|
|
|
|
78 |
|
79 |
+
def query_with_groq(query, retriever):
|
80 |
+
try:
|
81 |
+
# Retrieve relevant documents
|
82 |
+
docs = retriever.get_relevant_documents(query)
|
83 |
+
context = "\n".join([doc.page_content for doc in docs])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
+
# Call the Groq API with the query and context
|
86 |
+
completion = client.chat.completions.create(
|
87 |
+
model="llama3-70b-8192",
|
88 |
+
messages=[
|
89 |
+
{
|
90 |
+
"role": "system",
|
91 |
+
"content": (
|
92 |
+
"You are a knowledgeable medical assistant. For any medical term or disease, include comprehensive information covering: "
|
93 |
+
"definitions, types, historical background, major theories, known causes, and contributing risk factors. "
|
94 |
+
"Explain the genesis or theories on its origin, if applicable. Use a structured, thorough approach and keep language accessible. "
|
95 |
+
"provide symptoms, diagnosis, and treatment and post operative care , address all with indepth explanation , with specific details and step-by-step processes where relevant. "
|
96 |
+
"If the context does not adequately cover the user's question, respond with: 'I cannot provide an answer based on the available medical dataset.'"
|
97 |
+
)
|
98 |
+
},
|
99 |
+
{
|
100 |
+
"role": "system",
|
101 |
+
"content": (
|
102 |
+
"If the user asks for a medical explanation, ensure accuracy, don't include layman's terms if complex terms are used, "
|
103 |
+
"and organize responses in a structured way."
|
104 |
+
)
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"role": "system",
|
108 |
+
"content": (
|
109 |
+
"When comparing two terms or conditions, provide a clear, concise, and structured comparison. Highlight key differences in their "
|
110 |
+
"definitions, symptoms, causes, diagnoses, and treatments with indepth explanation of each. If relevant, include any overlapping characteristics."
|
111 |
+
)
|
112 |
+
},
|
113 |
+
{
|
114 |
+
"role": "user",
|
115 |
+
"content": f"{context}\n\nQ: {query}\nA:"
|
116 |
+
}
|
117 |
+
],
|
118 |
+
temperature=0.7,
|
119 |
+
max_tokens=3000,
|
120 |
+
stream=True
|
121 |
+
)
|
122 |
|
123 |
+
# Create a placeholder for streaming response
|
124 |
+
response_container = st.empty()
|
125 |
+
response = ""
|
126 |
+
|
127 |
+
# Stream the response
|
128 |
+
for chunk in completion:
|
129 |
+
if chunk.choices[0].delta.content:
|
130 |
+
response += chunk.choices[0].delta.content
|
131 |
+
response_container.markdown(response)
|
132 |
+
|
133 |
+
return response
|
134 |
+
|
135 |
+
except Exception as e:
|
136 |
+
st.error(f"Error during query processing: {str(e)}")
|
137 |
+
return None
|
138 |
|
139 |
+
if st.button("Get Answer"):
|
140 |
+
if query:
|
141 |
+
with st.spinner("Processing your query..."):
|
142 |
+
answer = query_with_groq(query, retriever)
|
143 |
+
if answer:
|
144 |
+
st.success("Query processed successfully!")
|
145 |
+
else:
|
146 |
+
st.warning("Please enter a query.")
|