|
import streamlit as st |
|
from transformers import pipeline |
|
st.cache_resource(ttl=300) |
|
|
|
pipe = pipeline(task="text-classification",model="yartyjung/Fake-Review-Detector") |
|
st.title(":green[Real ] :rainbow[or] :red[Fake]") |
|
st.divider() |
|
text = st.text_input("Your :red[suspicious] review here :sunglasses:",value="") |
|
if st.button("predict"): |
|
if text is not None: |
|
predictions = pipe(text) |
|
if predictions[0]['label'] == 'fake': |
|
for p in predictions: |
|
st.subheader(f":red[FAKE] :blue[{ round(p['score'] * 100, 1)} %]") |
|
elif predictions[0]['label'] == 'real': |
|
for p in predictions: |
|
st.subheader(f":green[REAL] :blue[{ round(p['score'] * 100, 1)} %]") |
|
st.divider() |
|
st.markdown(":red[***disclaimer*** This is a prediction by an _AI_, which might turn out incorrect.]") |
|
url = "https://huggingface.co/yartyjung/Fake-Review-Detector" |
|
st.markdown(":yellow[check out model at this [link](%s)]" % url) |