Spaces:
Running
on
Zero
Running
on
Zero
Update eva_clip/transformer.py
Browse files- eva_clip/transformer.py +60 -5
eva_clip/transformer.py
CHANGED
@@ -2,17 +2,13 @@ import os
|
|
2 |
import logging
|
3 |
from collections import OrderedDict
|
4 |
import math
|
|
|
5 |
from typing import Callable, Optional, Sequence
|
6 |
import numpy as np
|
7 |
import torch
|
8 |
from torch import nn
|
9 |
from torch.nn import functional as F
|
10 |
|
11 |
-
try:
|
12 |
-
from timm.models.layers import trunc_normal_
|
13 |
-
except:
|
14 |
-
from timm.layers import trunc_normal_
|
15 |
-
|
16 |
from .rope import VisionRotaryEmbedding, VisionRotaryEmbeddingFast
|
17 |
from .utils import to_2tuple
|
18 |
|
@@ -33,6 +29,65 @@ except ImportError:
|
|
33 |
xops = None
|
34 |
print("Please 'pip install xformers'")
|
35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
class LayerNormFp32(nn.LayerNorm):
|
37 |
"""Subclass torch's LayerNorm to handle fp16 (by casting to float32 and back)."""
|
38 |
def __init__(self, *args, **kwargs):
|
|
|
2 |
import logging
|
3 |
from collections import OrderedDict
|
4 |
import math
|
5 |
+
import warnings
|
6 |
from typing import Callable, Optional, Sequence
|
7 |
import numpy as np
|
8 |
import torch
|
9 |
from torch import nn
|
10 |
from torch.nn import functional as F
|
11 |
|
|
|
|
|
|
|
|
|
|
|
12 |
from .rope import VisionRotaryEmbedding, VisionRotaryEmbeddingFast
|
13 |
from .utils import to_2tuple
|
14 |
|
|
|
29 |
xops = None
|
30 |
print("Please 'pip install xformers'")
|
31 |
|
32 |
+
|
33 |
+
def _no_grad_trunc_normal_(tensor, mean, std, a, b):
|
34 |
+
# Cut & paste from PyTorch official master until it's in a few official releases - RW
|
35 |
+
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
|
36 |
+
def norm_cdf(x):
|
37 |
+
# Computes standard normal cumulative distribution function
|
38 |
+
return (1. + math.erf(x / math.sqrt(2.))) / 2.
|
39 |
+
|
40 |
+
if (mean < a - 2 * std) or (mean > b + 2 * std):
|
41 |
+
warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
|
42 |
+
"The distribution of values may be incorrect.",
|
43 |
+
stacklevel=2)
|
44 |
+
|
45 |
+
with torch.no_grad():
|
46 |
+
# Values are generated by using a truncated uniform distribution and
|
47 |
+
# then using the inverse CDF for the normal distribution.
|
48 |
+
# Get upper and lower cdf values
|
49 |
+
l = norm_cdf((a - mean) / std)
|
50 |
+
u = norm_cdf((b - mean) / std)
|
51 |
+
|
52 |
+
# Uniformly fill tensor with values from [l, u], then translate to
|
53 |
+
# [2l-1, 2u-1].
|
54 |
+
tensor.uniform_(2 * l - 1, 2 * u - 1)
|
55 |
+
|
56 |
+
# Use inverse cdf transform for normal distribution to get truncated
|
57 |
+
# standard normal
|
58 |
+
tensor.erfinv_()
|
59 |
+
|
60 |
+
# Transform to proper mean, std
|
61 |
+
tensor.mul_(std * math.sqrt(2.))
|
62 |
+
tensor.add_(mean)
|
63 |
+
|
64 |
+
# Clamp to ensure it's in the proper range
|
65 |
+
tensor.clamp_(min=a, max=b)
|
66 |
+
return tensor
|
67 |
+
|
68 |
+
|
69 |
+
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
|
70 |
+
# type: (Tensor, float, float, float, float) -> Tensor
|
71 |
+
r"""Fills the input Tensor with values drawn from a truncated
|
72 |
+
normal distribution. The values are effectively drawn from the
|
73 |
+
normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
|
74 |
+
with values outside :math:`[a, b]` redrawn until they are within
|
75 |
+
the bounds. The method used for generating the random values works
|
76 |
+
best when :math:`a \leq \text{mean} \leq b`.
|
77 |
+
Args:
|
78 |
+
tensor: an n-dimensional `torch.Tensor`
|
79 |
+
mean: the mean of the normal distribution
|
80 |
+
std: the standard deviation of the normal distribution
|
81 |
+
a: the minimum cutoff value
|
82 |
+
b: the maximum cutoff value
|
83 |
+
Examples:
|
84 |
+
>>> w = torch.empty(3, 5)
|
85 |
+
>>> nn.init.trunc_normal_(w)
|
86 |
+
"""
|
87 |
+
return _no_grad_trunc_normal_(tensor, mean, std, a, b)
|
88 |
+
|
89 |
+
|
90 |
+
|
91 |
class LayerNormFp32(nn.LayerNorm):
|
92 |
"""Subclass torch's LayerNorm to handle fp16 (by casting to float32 and back)."""
|
93 |
def __init__(self, *args, **kwargs):
|