Our3D / lib /seg_dcvgo.py
yansong1616's picture
Upload 384 files
b177539 verified
raw
history blame
28.5 kB
import os
import time
import functools
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch_scatter import segment_coo
from . import grid
from .dvgo import Raw2Alpha, Alphas2Weights
from .dmpigo import create_full_step_id
from torch.utils.cpp_extension import load
parent_dir = os.path.dirname(os.path.abspath(__file__))
ub360_utils_cuda = load(
name='ub360_utils_cuda',
sources=[
os.path.join(parent_dir, path)
for path in ['cuda/ub360_utils.cpp', 'cuda/ub360_utils_kernel.cu']],
verbose=True)
#TODO ORIGINAL bg_len=0.2
'''Model'''
class DirectContractedVoxGO(nn.Module):
def __init__(self, xyz_min, xyz_max,
num_voxels=0, num_voxels_base=0, num_objects = 1,
alpha_init=None,
mask_cache_world_size=None,
fast_color_thres=0, bg_len=0.2,
contracted_norm='inf',
density_type='DenseGrid', k0_type='DenseGrid',
density_config={}, k0_config={},
rgbnet_dim=0,
rgbnet_depth=3, rgbnet_width=128,
viewbase_pe=4,
**kwargs):
super(DirectContractedVoxGO, self).__init__()
# xyz_min/max are the boundary that separates fg and bg scene
xyz_min = torch.Tensor(xyz_min)
xyz_max = torch.Tensor(xyz_max)
assert len(((xyz_max - xyz_min) * 100000).long().unique()), 'scene bbox must be a cube in DirectContractedVoxGO'
self.register_buffer('scene_center', (xyz_min + xyz_max) * 0.5)
self.register_buffer('scene_radius', (xyz_max - xyz_min) * 0.5)
self.register_buffer('xyz_min', torch.Tensor([-1,-1,-1]) - bg_len)
self.register_buffer('xyz_max', torch.Tensor([1,1,1]) + bg_len)
if isinstance(fast_color_thres, dict):
self._fast_color_thres = fast_color_thres
self.fast_color_thres = fast_color_thres[0]
else:
self._fast_color_thres = None
self.fast_color_thres = fast_color_thres
self.bg_len = bg_len
self.contracted_norm = contracted_norm
# determine based grid resolution
self.num_voxels_base = num_voxels_base
self.voxel_size_base = ((self.xyz_max - self.xyz_min).prod() / self.num_voxels_base).pow(1/3)
# determine init grid resolution
self._set_grid_resolution(num_voxels)
# determine the density bias shift
self.alpha_init = alpha_init
self.register_buffer('act_shift', torch.FloatTensor([np.log(1/(1-alpha_init) - 1)]))
print('dcvgo: set density bias shift to', self.act_shift)
# init density voxel grid
self.density_type = density_type
self.density_config = density_config
self.density = grid.create_grid(
density_type, channels=1, world_size=self.world_size,
xyz_min=self.xyz_min, xyz_max=self.xyz_max,
config=self.density_config)
self.mode = 'coarse'
self.num_objects = num_objects
self.seg_mask_grid = grid.create_grid(
density_type, channels=self.num_objects, world_size=self.world_size,
xyz_min=self.xyz_min, xyz_max=self.xyz_max,
config=self.density_config)
self.mask_view_counts = torch.zeros_like(self.seg_mask_grid.grid, requires_grad=False)
self.dual_seg_mask_grid = grid.create_grid(
density_type, channels=self.num_objects, world_size=self.world_size,
xyz_min=self.xyz_min, xyz_max=self.xyz_max,
config=self.density_config)
# init color representation
self.rgbnet_kwargs = {
'rgbnet_dim': rgbnet_dim,
'rgbnet_depth': rgbnet_depth, 'rgbnet_width': rgbnet_width,
'viewbase_pe': viewbase_pe,
}
self.k0_type = k0_type
self.k0_config = k0_config
if rgbnet_dim <= 0:
# color voxel grid (coarse stage)
self.k0_dim = 3
self.k0 = grid.create_grid(
k0_type, channels=self.k0_dim, world_size=self.world_size,
xyz_min=self.xyz_min, xyz_max=self.xyz_max,
config=self.k0_config)
self.rgbnet = None
else:
# feature voxel grid + shallow MLP (fine stage)
self.k0_dim = rgbnet_dim
self.k0 = grid.create_grid(
k0_type, channels=self.k0_dim, world_size=self.world_size,
xyz_min=self.xyz_min, xyz_max=self.xyz_max,
config=self.k0_config)
self.register_buffer('viewfreq', torch.FloatTensor([(2**i) for i in range(viewbase_pe)]))
dim0 = (3+3*viewbase_pe*2)
dim0 += self.k0_dim
self.rgbnet = nn.Sequential(
nn.Linear(dim0, rgbnet_width), nn.ReLU(inplace=True),
*[
nn.Sequential(nn.Linear(rgbnet_width, rgbnet_width), nn.ReLU(inplace=True))
for _ in range(rgbnet_depth-2)
],
nn.Linear(rgbnet_width, 3),
)
nn.init.constant_(self.rgbnet[-1].bias, 0)
print('dcvgo: feature voxel grid', self.k0)
print('dcvgo: mlp', self.rgbnet)
# Using the coarse geometry if provided (used to determine known free space and unknown space)
# Re-implement as occupancy grid (2021/1/31)
if mask_cache_world_size is None:
mask_cache_world_size = self.world_size
mask = torch.ones(list(mask_cache_world_size), dtype=torch.bool)
self.mask_cache = grid.MaskGrid(
path=None, mask=mask,
xyz_min=self.xyz_min, xyz_max=self.xyz_max)
def _set_grid_resolution(self, num_voxels):
# Determine grid resolution
self.num_voxels = num_voxels
self.voxel_size = ((self.xyz_max - self.xyz_min).prod() / num_voxels).pow(1/3)
self.world_size = ((self.xyz_max - self.xyz_min) / self.voxel_size).long()
self.world_len = self.world_size[0].item()
self.voxel_size_ratio = self.voxel_size / self.voxel_size_base
print('dcvgo: voxel_size ', self.voxel_size)
print('dcvgo: world_size ', self.world_size)
print('dcvgo: voxel_size_base ', self.voxel_size_base)
print('dcvgo: voxel_size_ratio', self.voxel_size_ratio)
def get_kwargs(self):
return {
'xyz_min': self.xyz_min.cpu().numpy(),
'xyz_max': self.xyz_max.cpu().numpy(),
'num_voxels': self.num_voxels,
'num_voxels_base': self.num_voxels_base,
'alpha_init': self.alpha_init,
'voxel_size_ratio': self.voxel_size_ratio,
'mask_cache_world_size': list(self.mask_cache.mask.shape),
'fast_color_thres': self.fast_color_thres,
'contracted_norm': self.contracted_norm,
'density_type': self.density_type,
'k0_type': self.k0_type,
'density_config': self.density_config,
'k0_config': self.k0_config,
**self.rgbnet_kwargs,
}
@torch.no_grad()
def change_num_objects(self, num_obj):
self.num_objects = num_obj
device = self.seg_mask_grid.grid.device
self.seg_mask_grid = grid.create_grid(
'DenseGrid', channels=self.num_objects, world_size=self.world_size,
xyz_min=self.xyz_min, xyz_max=self.xyz_max,
config=self.density_config)
self.dual_seg_mask_grid = grid.create_grid(
'DenseGrid', channels=self.num_objects, world_size=self.world_size,
xyz_min=self.xyz_min, xyz_max=self.xyz_max,
config=self.density_config)
self.seg_mask_grid.to(device)
self.dual_seg_mask_grid.to(device)
print("Reset the seg_mask_grid with num_objects =", num_obj)
@torch.no_grad()
def segmentation_to_density(self):
assert self.seg_mask_grid.grid.shape[1] == 1 and "multi-object seg label cannot be applied directly to the density grid"
mask_grid = torch.zeros_like(self.seg_mask_grid.grid)
mask_grid[self.seg_mask_grid.grid > 0] = 1
self.density.grid *= mask_grid
self.density.grid[self.density.grid == 0] = -1e7
@torch.no_grad()
def segmentation_only(self):
assert self.seg_mask_grid.grid.shape[1] == 1 and "multi-object seg label cannot be applied directly to the density grid"
pass
@torch.no_grad()
def change_to_fine_mode(self):
self.mode = 'fine'
@torch.no_grad()
def scale_volume_grid(self, num_voxels):
print('dcvgo: scale_volume_grid start')
ori_world_size = self.world_size
self._set_grid_resolution(num_voxels)
print('dcvgo: scale_volume_grid scale world_size from', ori_world_size.tolist(), 'to', self.world_size.tolist())
self.density.scale_volume_grid(self.world_size)
self.seg_mask_grid.scale_volume_grid(self.world_size)
self.dual_seg_mask_grid.scale_volume_grid(self.world_size)
self.k0.scale_volume_grid(self.world_size)
if np.prod(self.world_size.tolist()) <= 256**3:
self_grid_xyz = torch.stack(torch.meshgrid(
torch.linspace(self.xyz_min[0], self.xyz_max[0], self.world_size[0]),
torch.linspace(self.xyz_min[1], self.xyz_max[1], self.world_size[1]),
torch.linspace(self.xyz_min[2], self.xyz_max[2], self.world_size[2]),
), -1)
self_alpha = F.max_pool3d(self.activate_density(self.density.get_dense_grid()), kernel_size=3, padding=1, stride=1)[0,0]
self.mask_cache = grid.MaskGrid(
path=None, mask=self.mask_cache(self_grid_xyz) & (self_alpha>self.fast_color_thres),
xyz_min=self.xyz_min, xyz_max=self.xyz_max)
print('dcvgo: scale_volume_grid finish')
@torch.no_grad()
def update_occupancy_cache(self):
ori_p = self.mask_cache.mask.float().mean().item()
cache_grid_xyz = torch.stack(torch.meshgrid(
torch.linspace(self.xyz_min[0], self.xyz_max[0], self.mask_cache.mask.shape[0]),
torch.linspace(self.xyz_min[1], self.xyz_max[1], self.mask_cache.mask.shape[1]),
torch.linspace(self.xyz_min[2], self.xyz_max[2], self.mask_cache.mask.shape[2]),
), -1)
cache_grid_density = self.density(cache_grid_xyz)[None,None]
cache_grid_alpha = self.activate_density(cache_grid_density)
cache_grid_alpha = F.max_pool3d(cache_grid_alpha, kernel_size=3, padding=1, stride=1)[0,0]
self.mask_cache.mask &= (cache_grid_alpha > self.fast_color_thres)
new_p = self.mask_cache.mask.float().mean().item()
print(f'dcvgo: update mask_cache {ori_p:.4f} => {new_p:.4f}')
def update_occupancy_cache_lt_nviews(self, rays_o_tr, rays_d_tr, imsz, render_kwargs, maskout_lt_nviews):
print('dcvgo: update mask_cache lt_nviews start')
eps_time = time.time()
count = torch.zeros_like(self.density.get_dense_grid()).long()
device = count.device
for rays_o_, rays_d_ in zip(rays_o_tr.split(imsz), rays_d_tr.split(imsz)):
ones = grid.DenseGrid(1, self.world_size, self.xyz_min, self.xyz_max)
for rays_o, rays_d in zip(rays_o_.split(8192), rays_d_.split(8192)):
ray_pts, inner_mask, t = self.sample_ray(
ori_rays_o=rays_o.to(device), ori_rays_d=rays_d.to(device),
**render_kwargs)
ones(ray_pts).sum().backward()
count.data += (ones.grid.grad > 1)
ori_p = self.mask_cache.mask.float().mean().item()
self.mask_cache.mask &= (count >= maskout_lt_nviews)[0,0]
new_p = self.mask_cache.mask.float().mean().item()
print(f'dcvgo: update mask_cache {ori_p:.4f} => {new_p:.4f}')
eps_time = time.time() - eps_time
print(f'dcvgo: update mask_cache lt_nviews finish (eps time:', eps_time, 'sec)')
def density_total_variation_add_grad(self, weight, dense_mode):
w = weight * self.world_size.max() / 128
self.density.total_variation_add_grad(w, w, w, dense_mode)
def k0_total_variation_add_grad(self, weight, dense_mode):
w = weight * self.world_size.max() / 128
self.k0.total_variation_add_grad(w, w, w, dense_mode)
def activate_density(self, density, interval=None):
interval = interval if interval is not None else self.voxel_size_ratio
shape = density.shape
return Raw2Alpha.apply(density.flatten(), self.act_shift, interval).reshape(shape)
def sample_ray(self, ori_rays_o, ori_rays_d, stepsize, is_train=False, **render_kwargs):
'''Sample query points on rays.
All the output points are sorted from near to far.
Input:
rays_o, rayd_d: both in [N, 3] indicating ray configurations.
stepsize: the number of voxels of each sample step.
Output:
ray_pts: [M, 3] storing all the sampled points.
ray_id: [M] the index of the ray of each point.
step_id: [M] the i'th step on a ray of each point.
'''
rays_o = (ori_rays_o - self.scene_center) / self.scene_radius
rays_d = ori_rays_d / ori_rays_d.norm(dim=-1, keepdim=True)
N_inner = int(2 / (2+2*self.bg_len) * self.world_len / stepsize) + 1
N_outer = N_inner
b_inner = torch.linspace(0, 2, N_inner+1)
b_outer = 2 / torch.linspace(1, 1/128, N_outer+1)
t = torch.cat([
(b_inner[1:] + b_inner[:-1]) * 0.5,
(b_outer[1:] + b_outer[:-1]) * 0.5,
])
ray_pts = rays_o[:,None,:] + rays_d[:,None,:] * t[None,:,None]
if self.contracted_norm == 'inf':
norm = ray_pts.abs().amax(dim=-1, keepdim=True)
elif self.contracted_norm == 'l2':
norm = ray_pts.norm(dim=-1, keepdim=True)
else:
raise NotImplementedError
inner_mask = (norm<=1)
ray_pts = torch.where(
inner_mask,
ray_pts,
ray_pts / norm * ((1+self.bg_len) - self.bg_len/norm)
)
return ray_pts, inner_mask.squeeze(-1), t
@torch.no_grad()
def forward(self, rays_o, rays_d, viewdirs, global_step=None, is_train=False, render_fct=0.0, **render_kwargs):
'''Volume rendering
@rays_o: [N, 3] the starting point of the N shooting rays.
@rays_d: [N, 3] the shooting direction of the N rays.
@viewdirs: [N, 3] viewing direction to compute positional embedding for MLP.
'''
assert len(rays_o.shape)==2 and rays_o.shape[-1]==3, 'Only suuport point queries in [N, 3] format'
if isinstance(self._fast_color_thres, dict) and global_step in self._fast_color_thres:
print(f'dcvgo: update fast_color_thres {self.fast_color_thres} => {self._fast_color_thres[global_step]}')
self.fast_color_thres = self._fast_color_thres[global_step]
ret_dict = {}
N = len(rays_o)
# sample points on rays
ray_pts, inner_mask, t = self.sample_ray(
ori_rays_o=rays_o, ori_rays_d=rays_d, is_train=global_step is not None, **render_kwargs)
n_max = len(t)
interval = render_kwargs['stepsize'] * self.voxel_size_ratio
ray_id, step_id = create_full_step_id(ray_pts.shape[:2])
# cumsum ray_pts to get distance from ray_o to any ray_pt in a ray
ray_distance = torch.zeros_like(ray_pts)
ray_distance[:, 1:] = torch.abs(ray_pts[:, 1:] - ray_pts[:, :-1])
ray_distance = torch.cumsum(ray_distance, dim=1)
# skip oversampled points outside scene bbox
mask = inner_mask.clone()
dist_thres = (2+2*self.bg_len) / self.world_len * render_kwargs['stepsize'] * 0.95
dist = (ray_pts[:,1:] - ray_pts[:,:-1]).norm(dim=-1)
mask[:, 1:] |= ub360_utils_cuda.cumdist_thres(dist, dist_thres)
ray_pts = ray_pts[mask]
ray_distance = ray_distance[mask]
inner_mask = inner_mask[mask]
t = t[None].repeat(N,1)[mask]
ray_id = ray_id[mask.flatten()]
step_id = step_id[mask.flatten()]
# skip known free space
mask = self.mask_cache(ray_pts)
ray_pts = ray_pts[mask]
ray_distance = ray_distance[mask]
inner_mask = inner_mask[mask]
t = t[mask]
ray_id = ray_id[mask]
step_id = step_id[mask]
# print(self.fast_color_thres, "self.fast_color_thres")
render_fct = max(render_fct, self.fast_color_thres)
# query for alpha w/ post-activation
density = self.density(ray_pts)
alpha = self.activate_density(density, interval)
if render_fct > 0:
mask = (alpha > render_fct)
ray_pts = ray_pts[mask]
ray_distance = ray_distance[mask]
inner_mask = inner_mask[mask]
t = t[mask]
ray_id = ray_id[mask]
step_id = step_id[mask]
density = density[mask]
alpha = alpha[mask]
# compute accumulated transmittance
weights, alphainv_last = Alphas2Weights.apply(alpha, ray_id, N)
if render_fct > 0:
mask = (weights > render_fct)
ray_pts = ray_pts[mask]
ray_distance = ray_distance[mask]
inner_mask = inner_mask[mask]
t = t[mask]
ray_id = ray_id[mask]
step_id = step_id[mask]
density = density[mask]
alpha = alpha[mask]
weights = weights[mask]
# query for segmentation mask
# only optimize the mask volume
if self.seg_mask_grid.grid.requires_grad:
with torch.enable_grad():
mask_pred = self.seg_mask_grid(ray_pts)
if self.mode == 'fine':
dual_mask_pred = self.dual_seg_mask_grid(ray_pts)
else:
mask_pred = self.seg_mask_grid(ray_pts)
if self.mode == 'fine':
dual_mask_pred = self.dual_seg_mask_grid(ray_pts)
# query for color
k0 = self.k0(ray_pts)
if self.rgbnet is None:
# no view-depend effect
rgb = torch.sigmoid(k0)
else:
# view-dependent color emission
viewdirs_emb = (viewdirs.unsqueeze(-1) * self.viewfreq).flatten(-2)
viewdirs_emb = torch.cat([viewdirs, viewdirs_emb.sin(), viewdirs_emb.cos()], -1)
viewdirs_emb = viewdirs_emb.flatten(0,-2)[ray_id]
rgb_feat = torch.cat([k0, viewdirs_emb], -1)
rgb_logit = self.rgbnet(rgb_feat)
rgb = torch.sigmoid(rgb_logit)
# Ray marching
rgb_marched = segment_coo(
src=(weights.unsqueeze(-1) * rgb),
index=ray_id,
out=torch.zeros([N, 3]),
reduce='sum')
dual_seg_mask_marched = None
if self.num_objects == 1:
if self.seg_mask_grid.grid.requires_grad:
with torch.enable_grad():
seg_mask_marched = segment_coo(
src=(weights.unsqueeze(-1).detach().clone() * mask_pred.unsqueeze(-1)),
index=ray_id,
out=torch.zeros([N, self.num_objects]),
reduce='sum')
if self.mode == 'fine':
dual_seg_mask_marched = segment_coo(
src=(weights.unsqueeze(-1).detach().clone() * dual_mask_pred.unsqueeze(-1)),
index=ray_id,
out=torch.zeros([N, self.num_objects]),
reduce='sum')
else:
seg_mask_marched = segment_coo(
src=(weights.unsqueeze(-1) * mask_pred.unsqueeze(-1)),
index=ray_id,
out=torch.zeros([N, self.num_objects]),
reduce='sum')
if self.mode == 'fine':
dual_seg_mask_marched = segment_coo(
src=(weights.unsqueeze(-1) * dual_mask_pred.unsqueeze(-1)),
index=ray_id,
out=torch.zeros([N, self.num_objects]),
reduce='sum')
else:
if self.seg_mask_grid.grid.requires_grad:
with torch.enable_grad():
seg_mask_marched = segment_coo(
src=(weights.unsqueeze(-1).detach().clone() * mask_pred),
index=ray_id,
out=torch.zeros([N, self.num_objects]),
reduce='sum')
if self.mode == 'fine':
dual_seg_mask_marched = segment_coo(
src=(weights.unsqueeze(-1).detach().clone() * dual_mask_pred.unsqueeze(-1)),
index=ray_id,
out=torch.zeros([N, self.num_objects]),
reduce='sum')
else:
seg_mask_marched = segment_coo(
src=(weights.unsqueeze(-1) * mask_pred),
index=ray_id,
out=torch.zeros([N, self.num_objects]),
reduce='sum')
if self.mode == 'fine':
dual_seg_mask_marched = segment_coo(
src=(weights.unsqueeze(-1) * dual_mask_pred.unsqueeze(-1)),
index=ray_id,
out=torch.zeros([N, self.num_objects]),
reduce='sum')
if render_kwargs.get('rand_bkgd', False) and is_train:
rgb_marched += (alphainv_last.unsqueeze(-1) * torch.rand_like(rgb_marched))
else:
rgb_marched += (alphainv_last.unsqueeze(-1) * render_kwargs['bg'])
wsum_mid = segment_coo(
src=weights[inner_mask],
index=ray_id[inner_mask],
out=torch.zeros([N]),
reduce='sum')
s = 1 - 1/(1+t) # [0, inf] => [0, 1]
ray_distance = ray_distance.norm(dim=-1)
ret_dict.update({
'alphainv_last': alphainv_last,
'weights': weights,
'wsum_mid': wsum_mid,
'rgb_marched': rgb_marched,
'raw_density': density,
'raw_alpha': alpha,
'raw_rgb': rgb,
'ray_id': ray_id,
'step_id': step_id,
'n_max': n_max,
't': t,
's': s,
'seg_mask_marched': seg_mask_marched,
'dual_seg_mask_marched': dual_seg_mask_marched,
'ray_distance': ray_distance
})
if render_kwargs.get('render_depth', False):
with torch.no_grad():
depth = segment_coo(
src=(weights * s),
index=ray_id,
out=torch.zeros([N]),
reduce='sum')
distance = segment_coo(
src=(weights * ray_distance),
index=ray_id,
out=torch.zeros([N]),
reduce='sum')
ret_dict.update({'depth': depth})
ret_dict.update({'distance': distance})
return ret_dict
@torch.no_grad()
def forward_mask(self, rays_o, rays_d, render_fct=0.0,**render_kwargs):
'''Volume rendering
@rays_o: [N, 3] the starting point of the N shooting rays.
@rays_d: [N, 3] the shooting direction of the N rays.
'''
assert len(rays_o.shape)==2 and rays_o.shape[-1]==3, 'Only suuport point queries in [N, 3] format'
# if isinstance(self._fast_color_thres, dict) and global_step in self._fast_color_thres:
# print(f'dcvgo: update fast_color_thres {self.fast_color_thres} => {self._fast_color_thres[global_step]}')
# self.fast_color_thres = self._fast_color_thres[global_step]
ret_dict = {}
N = len(rays_o)
# sample points on rays
ray_pts, inner_mask, t = self.sample_ray(
ori_rays_o=rays_o, ori_rays_d=rays_d, is_train=False, **render_kwargs)
n_max = len(t)
interval = render_kwargs['stepsize'] * self.voxel_size_ratio
ray_id, step_id = create_full_step_id(ray_pts.shape[:2])
# skip oversampled points outside scene bbox
mask = inner_mask.clone()
dist_thres = (2+2*self.bg_len) / self.world_len * render_kwargs['stepsize'] * 0.95
dist = (ray_pts[:,1:] - ray_pts[:,:-1]).norm(dim=-1)
mask[:, 1:] |= ub360_utils_cuda.cumdist_thres(dist, dist_thres)
ray_pts = ray_pts[mask]
inner_mask = inner_mask[mask]
t = t[None].repeat(N,1)[mask]
ray_id = ray_id[mask.flatten()]
step_id = step_id[mask.flatten()]
# skip known free space
mask = self.mask_cache(ray_pts)
ray_pts = ray_pts[mask]
inner_mask = inner_mask[mask]
t = t[mask]
ray_id = ray_id[mask]
step_id = step_id[mask]
render_fct = max(render_fct, self.fast_color_thres)
# query for alpha w/ post-activation
density = self.density(ray_pts)
alpha = self.activate_density(density, interval)
if render_fct > 0:
mask = (alpha > render_fct)
ray_pts = ray_pts[mask]
inner_mask = inner_mask[mask]
t = t[mask]
ray_id = ray_id[mask]
step_id = step_id[mask]
density = density[mask]
alpha = alpha[mask]
# compute accumulated transmittance
weights, alphainv_last = Alphas2Weights.apply(alpha, ray_id, N)
if render_fct > 0:
mask = (weights > render_fct)
ray_pts = ray_pts[mask]
inner_mask = inner_mask[mask]
t = t[mask]
ray_id = ray_id[mask]
step_id = step_id[mask]
density = density[mask]
alpha = alpha[mask]
weights = weights[mask]
# query for segmentation mask
# only optimize the mask volume
if self.seg_mask_grid.grid.requires_grad:
with torch.enable_grad():
mask_pred = self.seg_mask_grid(ray_pts)
else:
mask_pred = self.seg_mask_grid(ray_pts)
if self.seg_mask_grid.grid.requires_grad:
with torch.enable_grad():
seg_mask_marched = segment_coo(
src=(weights.unsqueeze(-1) * mask_pred),
index=ray_id,
out=torch.zeros([N, self.num_objects]),
reduce='sum')
else:
seg_mask_marched = segment_coo(
src=(weights.unsqueeze(-1) * mask_pred),
index=ray_id,
out=torch.zeros([N, self.num_objects]),
reduce='sum')
ret_dict.update({
'seg_mask_marched': seg_mask_marched,
})
return ret_dict
class DistortionLoss(torch.autograd.Function):
@staticmethod
def forward(ctx, w, s, n_max, ray_id):
n_rays = ray_id.max()+1
interval = 1/n_max
w_prefix, w_total, ws_prefix, ws_total = ub360_utils_cuda.segment_cumsum(w, s, ray_id)
loss_uni = (1/3) * interval * w.pow(2)
loss_bi = 2 * w * (s * w_prefix - ws_prefix)
ctx.save_for_backward(w, s, w_prefix, w_total, ws_prefix, ws_total, ray_id)
ctx.interval = interval
return (loss_bi.sum() + loss_uni.sum()) / n_rays
@staticmethod
@torch.autograd.function.once_differentiable
def backward(ctx, grad_back):
w, s, w_prefix, w_total, ws_prefix, ws_total, ray_id = ctx.saved_tensors
interval = ctx.interval
grad_uni = (1/3) * interval * 2 * w
w_suffix = w_total[ray_id] - (w_prefix + w)
ws_suffix = ws_total[ray_id] - (ws_prefix + w*s)
grad_bi = 2 * (s * (w_prefix - w_suffix) + (ws_suffix - ws_prefix))
grad = grad_back * (grad_bi + grad_uni)
return grad, None, None, None
distortion_loss = DistortionLoss.apply