yanranxiaoxi's picture
chore: update app.py
908cc60 verified
import torch
import spaces
import gradio as gr
import os
import numpy as np
import trimesh
import mcubes
import imageio
from torchvision.utils import save_image
from PIL import Image
from transformers import AutoModel, AutoConfig
from rembg import remove, new_session
from functools import partial
from kiui.op import recenter
import kiui
# from gradio_litmodel3d import LitModel3D
import shutil
def find_cuda():
# 检查 CUDA_HOME 或 CUDA_PATH 环境变量是否已设置
cuda_home = os.environ.get('CUDA_HOME') or os.environ.get('CUDA_PATH')
if cuda_home and os.path.exists(cuda_home):
return cuda_home
# 在系统 PATH 中搜索 nvcc 可执行文件
nvcc_path = shutil.which('nvcc')
if nvcc_path:
# 删除“bin/nvcc”部分,获取 CUDA 安装路径
cuda_path = os.path.dirname(os.path.dirname(nvcc_path))
return cuda_path
return None
cuda_path = find_cuda()
if cuda_path:
print(f"CUDA 已安装在:{cuda_path}")
else:
print("未找到已安装的 CUDA 路径")
# 从 HF 加载预训练模型
class LRMGeneratorWrapper:
def __init__(self):
self.config = AutoConfig.from_pretrained("yanranxiaoxi/image-upscale", trust_remote_code=True, token=os.environ.get('MODEL_ACCESS_TOKEN'))
self.model = AutoModel.from_pretrained("yanranxiaoxi/image-upscale", trust_remote_code=True, token=os.environ.get('MODEL_ACCESS_TOKEN'))
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.model.to(self.device)
self.model.eval()
def forward(self, image, camera):
return self.model(image, camera)
model_wrapper = LRMGeneratorWrapper()
# 处理输入图像
def preprocess_image(image, source_size):
session = new_session("isnet-general-use")
rembg_remove = partial(remove, session=session)
image = np.array(image)
image = rembg_remove(image)
mask = rembg_remove(image, only_mask=True)
image = recenter(image, mask, border_ratio=0.20)
image = torch.tensor(image).permute(2, 0, 1).unsqueeze(0) / 255.0
if image.shape[1] == 4:
image = image[:, :3, ...] * image[:, 3:, ...] + (1 - image[:, 3:, ...])
image = torch.nn.functional.interpolate(image, size=(source_size, source_size), mode='bicubic', align_corners=True)
image = torch.clamp(image, 0, 1)
return image
def get_normalized_camera_intrinsics(intrinsics: torch.Tensor):
fx, fy = intrinsics[:, 0, 0], intrinsics[:, 0, 1]
cx, cy = intrinsics[:, 1, 0], intrinsics[:, 1, 1]
width, height = intrinsics[:, 2, 0], intrinsics[:, 2, 1]
fx, fy = fx / width, fy / height
cx, cy = cx / width, cy / height
return fx, fy, cx, cy
def build_camera_principle(RT: torch.Tensor, intrinsics: torch.Tensor):
fx, fy, cx, cy = get_normalized_camera_intrinsics(intrinsics)
return torch.cat([
RT.reshape(-1, 12),
fx.unsqueeze(-1), fy.unsqueeze(-1), cx.unsqueeze(-1), cy.unsqueeze(-1),
], dim=-1)
def _default_intrinsics():
fx = fy = 384
cx = cy = 256
w = h = 512
intrinsics = torch.tensor([
[fx, fy],
[cx, cy],
[w, h],
], dtype=torch.float32)
return intrinsics
def _default_source_camera(batch_size: int = 1):
canonical_camera_extrinsics = torch.tensor([[
[0, 0, 1, 1],
[1, 0, 0, 0],
[0, 1, 0, 0],
]], dtype=torch.float32)
canonical_camera_intrinsics = _default_intrinsics().unsqueeze(0)
source_camera = build_camera_principle(canonical_camera_extrinsics, canonical_camera_intrinsics)
return source_camera.repeat(batch_size, 1)
def _center_looking_at_camera_pose(camera_position: torch.Tensor, look_at: torch.Tensor = None, up_world: torch.Tensor = None):
"""
camera_position: (M, 3)
look_at: (3)
up_world: (3)
return: (M, 3, 4)
"""
# 默认情况下,从原点向上为 pos-z
if look_at is None:
look_at = torch.tensor([0, 0, 0], dtype=torch.float32)
if up_world is None:
up_world = torch.tensor([0, 0, 1], dtype=torch.float32)
look_at = look_at.unsqueeze(0).repeat(camera_position.shape[0], 1)
up_world = up_world.unsqueeze(0).repeat(camera_position.shape[0], 1)
z_axis = camera_position - look_at
z_axis = z_axis / z_axis.norm(dim=-1, keepdim=True)
x_axis = torch.cross(up_world, z_axis)
x_axis = x_axis / x_axis.norm(dim=-1, keepdim=True)
y_axis = torch.cross(z_axis, x_axis)
y_axis = y_axis / y_axis.norm(dim=-1, keepdim=True)
extrinsics = torch.stack([x_axis, y_axis, z_axis, camera_position], dim=-1)
return extrinsics
def compose_extrinsic_RT(RT: torch.Tensor):
"""
从 RT 生成标准形式的外差矩阵。
分批输入/输出。
"""
return torch.cat([
RT,
torch.tensor([[[0, 0, 0, 1]]], dtype=torch.float32).repeat(RT.shape[0], 1, 1).to(RT.device)
], dim=1)
def _build_camera_standard(RT: torch.Tensor, intrinsics: torch.Tensor):
"""
RT: (N, 3, 4)
intrinsics: (N, 3, 2), [[fx, fy], [cx, cy], [width, height]]
"""
E = compose_extrinsic_RT(RT)
fx, fy, cx, cy = get_normalized_camera_intrinsics(intrinsics)
I = torch.stack([
torch.stack([fx, torch.zeros_like(fx), cx], dim=-1),
torch.stack([torch.zeros_like(fy), fy, cy], dim=-1),
torch.tensor([[0, 0, 1]], dtype=torch.float32, device=RT.device).repeat(RT.shape[0], 1),
], dim=1)
return torch.cat([
E.reshape(-1, 16),
I.reshape(-1, 9),
], dim=-1)
def _default_render_cameras(batch_size: int = 1):
M = 80
radius = 1.5
elevation = 0
camera_positions = []
rand_theta = np.random.uniform(0, np.pi/180)
elevation = np.radians(elevation)
for i in range(M):
theta = 2 * np.pi * i / M + rand_theta
x = radius * np.cos(theta) * np.cos(elevation)
y = radius * np.sin(theta) * np.cos(elevation)
z = radius * np.sin(elevation)
camera_positions.append([x, y, z])
camera_positions = torch.tensor(camera_positions, dtype=torch.float32)
extrinsics = _center_looking_at_camera_pose(camera_positions)
render_camera_intrinsics = _default_intrinsics().unsqueeze(0).repeat(extrinsics.shape[0], 1, 1)
render_cameras = _build_camera_standard(extrinsics, render_camera_intrinsics)
return render_cameras.unsqueeze(0).repeat(batch_size, 1, 1)
@spaces.GPU
def generate_mesh(image, source_size=512, render_size=384, mesh_size=512, export_mesh=False, export_video=False, fps=30):
image = preprocess_image(image, source_size).to(model_wrapper.device)
source_camera = _default_source_camera(batch_size=1).to(model_wrapper.device)
with torch.no_grad():
planes = model_wrapper.forward(image, source_camera)
if export_mesh:
grid_out = model_wrapper.model.synthesizer.forward_grid(planes=planes, grid_size=mesh_size)
vtx, faces = mcubes.marching_cubes(grid_out['sigma'].float().squeeze(0).squeeze(-1).cpu().numpy(), 1.0)
vtx = vtx / (mesh_size - 1) * 2 - 1
vtx_tensor = torch.tensor(vtx, dtype=torch.float32, device=model_wrapper.device).unsqueeze(0)
vtx_colors = model_wrapper.model.synthesizer.forward_points(planes, vtx_tensor)['rgb'].float().squeeze(0).cpu().numpy()
vtx_colors = (vtx_colors * 255).astype(np.uint8)
mesh = trimesh.Trimesh(vertices=vtx, faces=faces, vertex_colors=vtx_colors)
mesh_path = "xiaoxis_mesh.obj"
mesh.export(mesh_path, 'obj')
return None, mesh_path
if export_video:
render_cameras = _default_render_cameras(batch_size=1).to(model_wrapper.device)
frames = []
chunk_size = 1
for i in range(0, render_cameras.shape[1], chunk_size):
frame_chunk = model_wrapper.model.synthesizer(
planes,
render_cameras[:, i:i + chunk_size],
render_size,
render_size,
0,
0
)
frames.append(frame_chunk['images_rgb'])
frames = torch.cat(frames, dim=1)
frames = frames.squeeze(0)
frames = (frames.permute(0, 2, 3, 1).cpu().numpy() * 255).astype(np.uint8)
video_path = "xiaoxis_video.mp4"
imageio.mimwrite(video_path, frames, fps=fps)
return None, video_path
return planes, None
return None, None
def step_1_generate_planes(image):
planes, _ = generate_mesh(image)
return planes
def step_2_generate_obj(image):
_, mesh_path = generate_mesh(image, export_mesh=True)
return mesh_path, mesh_path
def step_3_generate_video(image):
_, video_path = generate_mesh(image, export_video=True)
return video_path, video_path
# 从 assets 文件夹中设置示例文件,并限制最多读取 10 个文件
example_folder = "assets"
examples = [os.path.join(example_folder, f) for f in os.listdir(example_folder) if f.endswith(('.png', '.jpg', '.jpeg', '.webp'))][:10]
with gr.Blocks() as demo:
with gr.Row():
gr.Markdown("""
# 图像升维计算模型:EMU Video 的衍生尝试
我们利用视频扩散模型作为多视图数据生成器,从而促进可扩展 3D 生成模型的学习。以下展示了视频扩散模型作为多视图数据引擎的潜力,能够生成无限规模的合成数据以支持可扩展的训练。我们提出的模型从合成数据中学习,在生成 3D 资产方面表现出卓越的性能。
除了当前状态之外,我们的模型还具有高度可扩展性,并且可以根据合成数据和 3D 数据的数量进行扩展,为 3D 生成模型铺平了新的道路。
""")
with gr.Row():
with gr.Column():
img_input = gr.Image(type="pil", label="输入图像")
examples_component = gr.Examples(examples=examples, inputs=img_input, outputs=None, examples_per_page=5)
generate_mesh_button = gr.Button("生成模型")
generate_video_button = gr.Button("生成视频")
with gr.Column():
# model_output = LitModel3D(
# clear_color=[0, 0, 0, 0], # 可调整背景颜色,以获得更好的对比度
# label="模型可视化",
# scale=1.0,
# tonemapping="aces", # 可使用 aces 色调映射,使灯光更逼真
# exposure=1.1, # 可调节曝光以控制亮度
# contrast=1.1, # 可略微增加对比度,以获得更好的深度
# camera_position=(0, 0, 2), # 将设置初始摄像机位置,使模型居中
# zoom_speed=0.5, # 将调整变焦速度,以便更好地控制
# pan_speed=0.5, # 将调整摇摄速度,以便更好地控制
# interactive=False # 这样用户就可以与模型进行交互
# )
model_output = gr.Model3D(
clear_color=(0.0, 0.0, 0.0, 0.0), # 可调整背景颜色,以获得更好的对比度
label="模型可视化",
scale=1,
camera_position=(0, 0, 2), # 将设置初始摄像机位置,使模型居中
zoom_speed=0.5, # 将调整变焦速度,以便更好地控制
pan_speed=0.5, # 将调整摇摄速度,以便更好地控制
interactive=False # 这样用户就可以与模型进行交互
)
with gr.Row():
with gr.Column():
obj_file_output = gr.File(label="下载 .obj 文件")
video_file_output = gr.File(label="下载视频")
with gr.Column():
video_output = gr.Video(label="360° 视频")
# 清除输出
def clear_model_viewer():
"""在加载新模型前重置 Gradio。"""
return None, None
# 清除输出的数据
img_input.change(fn=clear_model_viewer, outputs=[model_output, video_output])
# 生成模型和视频
generate_mesh_button.click(fn=step_2_generate_obj, inputs=img_input, outputs=[obj_file_output, model_output])
generate_video_button.click(fn=step_3_generate_video, inputs=img_input, outputs=[video_file_output, video_output])
demo.launch(
# auth=(os.environ.get('AUTH_USERNAME'), os.environ.get('AUTH_PASSWORD'))
)