arena / response.py
Kang Suhyun
[#71] Add custom prompt option (#77)
43c8549 unverified
raw
history blame
2.69 kB
"""
This module contains functions for generating responses using LLMs.
"""
import enum
from random import sample
from typing import List
from uuid import uuid4
from firebase_admin import firestore
import gradio as gr
from leaderboard import db
from model import Model
from model import supported_models
def create_history(model_name: str, instruction: str, prompt: str,
response: str):
doc_id = uuid4().hex
doc = {
"id": doc_id,
"model": model_name,
"instruction": instruction,
"prompt": prompt,
"response": response,
"timestamp": firestore.SERVER_TIMESTAMP
}
doc_ref = db.collection("arena-history").document(doc_id)
doc_ref.set(doc)
class Category(enum.Enum):
SUMMARIZE = "Summarize"
TRANSLATE = "Translate"
# TODO(#31): Let the model builders set the instruction.
def get_instruction(category: str, model: Model, source_lang: str,
target_lang: str):
if category == Category.SUMMARIZE.value:
return model.summarize_instruction
if category == Category.TRANSLATE.value:
return model.translate_instruction.format(source_lang=source_lang,
target_lang=target_lang)
def get_responses(prompt: str, category: str, source_lang: str,
target_lang: str):
if not category:
raise gr.Error("Please select a category.")
if category == Category.TRANSLATE.value and (not source_lang or
not target_lang):
raise gr.Error("Please select source and target languages.")
models: List[Model] = sample(list(supported_models), 2)
responses = []
for model in models:
instruction = get_instruction(category, model, source_lang, target_lang)
try:
# TODO(#1): Allow user to set configuration.
response = model.completion(messages=[{
"role": "system",
"content": instruction
}, {
"role": "user",
"content": prompt
}])
create_history(model.name, instruction, prompt, response)
responses.append(response)
# TODO(#1): Narrow down the exception type.
except Exception as e: # pylint: disable=broad-except
print(f"Error with model {model.name}: {e}")
raise gr.Error("Failed to get response. Please try again.")
model_names = [model.name for model in models]
# It simulates concurrent stream response generation.
max_response_length = max(len(response) for response in responses)
for i in range(max_response_length):
yield [response[:i + 1] for response in responses
] + model_names + [instruction]
yield responses + model_names + [instruction]