KingNish commited on
Commit
115b460
1 Parent(s): d2cbb30

Delete diffusers_patches.py

Browse files
Files changed (1) hide show
  1. diffusers_patches.py +0 -541
diffusers_patches.py DELETED
@@ -1,541 +0,0 @@
1
- import torch
2
- from diffusers import ImagePipelineOutput, PixArtAlphaPipeline, AutoencoderKL, Transformer2DModel, \
3
- DPMSolverMultistepScheduler
4
- from diffusers.image_processor import VaeImageProcessor
5
- from diffusers.models.attention import BasicTransformerBlock
6
- from diffusers.models.embeddings import PixArtAlphaTextProjection, PatchEmbed
7
- from diffusers.models.normalization import AdaLayerNormSingle
8
- from diffusers.pipelines.pixart_alpha.pipeline_pixart_alpha import retrieve_timesteps
9
- from typing import Callable, List, Optional, Tuple, Union
10
-
11
- from diffusers.utils import deprecate
12
- from torch import nn
13
- from transformers import T5Tokenizer, T5EncoderModel
14
-
15
- ASPECT_RATIO_2048_BIN = {
16
- "0.25": [1024.0, 4096.0],
17
- "0.26": [1024.0, 3968.0],
18
- "0.27": [1024.0, 3840.0],
19
- "0.28": [1024.0, 3712.0],
20
- "0.32": [1152.0, 3584.0],
21
- "0.33": [1152.0, 3456.0],
22
- "0.35": [1152.0, 3328.0],
23
- "0.4": [1280.0, 3200.0],
24
- "0.42": [1280.0, 3072.0],
25
- "0.48": [1408.0, 2944.0],
26
- "0.5": [1408.0, 2816.0],
27
- "0.52": [1408.0, 2688.0],
28
- "0.57": [1536.0, 2688.0],
29
- "0.6": [1536.0, 2560.0],
30
- "0.68": [1664.0, 2432.0],
31
- "0.72": [1664.0, 2304.0],
32
- "0.78": [1792.0, 2304.0],
33
- "0.82": [1792.0, 2176.0],
34
- "0.88": [1920.0, 2176.0],
35
- "0.94": [1920.0, 2048.0],
36
- "1.0": [2048.0, 2048.0],
37
- "1.07": [2048.0, 1920.0],
38
- "1.13": [2176.0, 1920.0],
39
- "1.21": [2176.0, 1792.0],
40
- "1.29": [2304.0, 1792.0],
41
- "1.38": [2304.0, 1664.0],
42
- "1.46": [2432.0, 1664.0],
43
- "1.67": [2560.0, 1536.0],
44
- "1.75": [2688.0, 1536.0],
45
- "2.0": [2816.0, 1408.0],
46
- "2.09": [2944.0, 1408.0],
47
- "2.4": [3072.0, 1280.0],
48
- "2.5": [3200.0, 1280.0],
49
- "2.89": [3328.0, 1152.0],
50
- "3.0": [3456.0, 1152.0],
51
- "3.11": [3584.0, 1152.0],
52
- "3.62": [3712.0, 1024.0],
53
- "3.75": [3840.0, 1024.0],
54
- "3.88": [3968.0, 1024.0],
55
- "4.0": [4096.0, 1024.0]
56
- }
57
-
58
- ASPECT_RATIO_256_BIN = {
59
- "0.25": [128.0, 512.0],
60
- "0.28": [128.0, 464.0],
61
- "0.32": [144.0, 448.0],
62
- "0.33": [144.0, 432.0],
63
- "0.35": [144.0, 416.0],
64
- "0.4": [160.0, 400.0],
65
- "0.42": [160.0, 384.0],
66
- "0.48": [176.0, 368.0],
67
- "0.5": [176.0, 352.0],
68
- "0.52": [176.0, 336.0],
69
- "0.57": [192.0, 336.0],
70
- "0.6": [192.0, 320.0],
71
- "0.68": [208.0, 304.0],
72
- "0.72": [208.0, 288.0],
73
- "0.78": [224.0, 288.0],
74
- "0.82": [224.0, 272.0],
75
- "0.88": [240.0, 272.0],
76
- "0.94": [240.0, 256.0],
77
- "1.0": [256.0, 256.0],
78
- "1.07": [256.0, 240.0],
79
- "1.13": [272.0, 240.0],
80
- "1.21": [272.0, 224.0],
81
- "1.29": [288.0, 224.0],
82
- "1.38": [288.0, 208.0],
83
- "1.46": [304.0, 208.0],
84
- "1.67": [320.0, 192.0],
85
- "1.75": [336.0, 192.0],
86
- "2.0": [352.0, 176.0],
87
- "2.09": [368.0, 176.0],
88
- "2.4": [384.0, 160.0],
89
- "2.5": [400.0, 160.0],
90
- "3.0": [432.0, 144.0],
91
- "4.0": [512.0, 128.0]
92
- }
93
-
94
- ASPECT_RATIO_1024_BIN = {
95
- "0.25": [512.0, 2048.0],
96
- "0.28": [512.0, 1856.0],
97
- "0.32": [576.0, 1792.0],
98
- "0.33": [576.0, 1728.0],
99
- "0.35": [576.0, 1664.0],
100
- "0.4": [640.0, 1600.0],
101
- "0.42": [640.0, 1536.0],
102
- "0.48": [704.0, 1472.0],
103
- "0.5": [704.0, 1408.0],
104
- "0.52": [704.0, 1344.0],
105
- "0.57": [768.0, 1344.0],
106
- "0.6": [768.0, 1280.0],
107
- "0.68": [832.0, 1216.0],
108
- "0.72": [832.0, 1152.0],
109
- "0.78": [896.0, 1152.0],
110
- "0.82": [896.0, 1088.0],
111
- "0.88": [960.0, 1088.0],
112
- "0.94": [960.0, 1024.0],
113
- "1.0": [1024.0, 1024.0],
114
- "1.07": [1024.0, 960.0],
115
- "1.13": [1088.0, 960.0],
116
- "1.21": [1088.0, 896.0],
117
- "1.29": [1152.0, 896.0],
118
- "1.38": [1152.0, 832.0],
119
- "1.46": [1216.0, 832.0],
120
- "1.67": [1280.0, 768.0],
121
- "1.75": [1344.0, 768.0],
122
- "2.0": [1408.0, 704.0],
123
- "2.09": [1472.0, 704.0],
124
- "2.4": [1536.0, 640.0],
125
- "2.5": [1600.0, 640.0],
126
- "3.0": [1728.0, 576.0],
127
- "4.0": [2048.0, 512.0],
128
- }
129
-
130
- ASPECT_RATIO_512_BIN = {
131
- "0.25": [256.0, 1024.0],
132
- "0.28": [256.0, 928.0],
133
- "0.32": [288.0, 896.0],
134
- "0.33": [288.0, 864.0],
135
- "0.35": [288.0, 832.0],
136
- "0.4": [320.0, 800.0],
137
- "0.42": [320.0, 768.0],
138
- "0.48": [352.0, 736.0],
139
- "0.5": [352.0, 704.0],
140
- "0.52": [352.0, 672.0],
141
- "0.57": [384.0, 672.0],
142
- "0.6": [384.0, 640.0],
143
- "0.68": [416.0, 608.0],
144
- "0.72": [416.0, 576.0],
145
- "0.78": [448.0, 576.0],
146
- "0.82": [448.0, 544.0],
147
- "0.88": [480.0, 544.0],
148
- "0.94": [480.0, 512.0],
149
- "1.0": [512.0, 512.0],
150
- "1.07": [512.0, 480.0],
151
- "1.13": [544.0, 480.0],
152
- "1.21": [544.0, 448.0],
153
- "1.29": [576.0, 448.0],
154
- "1.38": [576.0, 416.0],
155
- "1.46": [608.0, 416.0],
156
- "1.67": [640.0, 384.0],
157
- "1.75": [672.0, 384.0],
158
- "2.0": [704.0, 352.0],
159
- "2.09": [736.0, 352.0],
160
- "2.4": [768.0, 320.0],
161
- "2.5": [800.0, 320.0],
162
- "3.0": [864.0, 288.0],
163
- "4.0": [1024.0, 256.0],
164
- }
165
-
166
-
167
- def pipeline_pixart_alpha_call(
168
- self,
169
- prompt: Union[str, List[str]] = None,
170
- negative_prompt: str = "",
171
- num_inference_steps: int = 20,
172
- timesteps: List[int] = None,
173
- guidance_scale: float = 4.5,
174
- num_images_per_prompt: Optional[int] = 1,
175
- height: Optional[int] = None,
176
- width: Optional[int] = None,
177
- eta: float = 0.0,
178
- generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
179
- latents: Optional[torch.FloatTensor] = None,
180
- prompt_embeds: Optional[torch.FloatTensor] = None,
181
- prompt_attention_mask: Optional[torch.FloatTensor] = None,
182
- negative_prompt_embeds: Optional[torch.FloatTensor] = None,
183
- negative_prompt_attention_mask: Optional[torch.FloatTensor] = None,
184
- output_type: Optional[str] = "pil",
185
- return_dict: bool = True,
186
- callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
187
- callback_steps: int = 1,
188
- clean_caption: bool = True,
189
- use_resolution_binning: bool = True,
190
- max_sequence_length: int = 120,
191
- **kwargs,
192
- ) -> Union[ImagePipelineOutput, Tuple]:
193
- """
194
- Function invoked when calling the pipeline for generation.
195
-
196
- Args:
197
- prompt (`str` or `List[str]`, *optional*):
198
- The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
199
- instead.
200
- negative_prompt (`str` or `List[str]`, *optional*):
201
- The prompt or prompts not to guide the image generation. If not defined, one has to pass
202
- `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
203
- less than `1`).
204
- num_inference_steps (`int`, *optional*, defaults to 100):
205
- The number of denoising steps. More denoising steps usually lead to a higher quality image at the
206
- expense of slower inference.
207
- timesteps (`List[int]`, *optional*):
208
- Custom timesteps to use for the denoising process. If not defined, equal spaced `num_inference_steps`
209
- timesteps are used. Must be in descending order.
210
- guidance_scale (`float`, *optional*, defaults to 4.5):
211
- Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
212
- `guidance_scale` is defined as `w` of equation 2. of [Imagen
213
- Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
214
- 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
215
- usually at the expense of lower image quality.
216
- num_images_per_prompt (`int`, *optional*, defaults to 1):
217
- The number of images to generate per prompt.
218
- height (`int`, *optional*, defaults to self.unet.config.sample_size):
219
- The height in pixels of the generated image.
220
- width (`int`, *optional*, defaults to self.unet.config.sample_size):
221
- The width in pixels of the generated image.
222
- eta (`float`, *optional*, defaults to 0.0):
223
- Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
224
- [`schedulers.DDIMScheduler`], will be ignored for others.
225
- generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
226
- One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
227
- to make generation deterministic.
228
- latents (`torch.FloatTensor`, *optional*):
229
- Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
230
- generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
231
- tensor will ge generated by sampling using the supplied random `generator`.
232
- prompt_embeds (`torch.FloatTensor`, *optional*):
233
- Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
234
- provided, text embeddings will be generated from `prompt` input argument.
235
- prompt_attention_mask (`torch.FloatTensor`, *optional*): Pre-generated attention mask for text embeddings.
236
- negative_prompt_embeds (`torch.FloatTensor`, *optional*):
237
- Pre-generated negative text embeddings. For PixArt-Alpha this negative prompt should be "". If not
238
- provided, negative_prompt_embeds will be generated from `negative_prompt` input argument.
239
- negative_prompt_attention_mask (`torch.FloatTensor`, *optional*):
240
- Pre-generated attention mask for negative text embeddings.
241
- output_type (`str`, *optional*, defaults to `"pil"`):
242
- The output format of the generate image. Choose between
243
- [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
244
- return_dict (`bool`, *optional*, defaults to `True`):
245
- Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple.
246
- callback (`Callable`, *optional*):
247
- A function that will be called every `callback_steps` steps during inference. The function will be
248
- called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
249
- callback_steps (`int`, *optional*, defaults to 1):
250
- The frequency at which the `callback` function will be called. If not specified, the callback will be
251
- called at every step.
252
- clean_caption (`bool`, *optional*, defaults to `True`):
253
- Whether or not to clean the caption before creating embeddings. Requires `beautifulsoup4` and `ftfy` to
254
- be installed. If the dependencies are not installed, the embeddings will be created from the raw
255
- prompt.
256
- use_resolution_binning (`bool` defaults to `True`):
257
- If set to `True`, the requested height and width are first mapped to the closest resolutions using
258
- `ASPECT_RATIO_1024_BIN`. After the produced latents are decoded into images, they are resized back to
259
- the requested resolution. Useful for generating non-square images.
260
-
261
- Examples:
262
-
263
- Returns:
264
- [`~pipelines.ImagePipelineOutput`] or `tuple`:
265
- If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is
266
- returned where the first element is a list with the generated images
267
- """
268
- if "mask_feature" in kwargs:
269
- deprecation_message = "The use of `mask_feature` is deprecated. It is no longer used in any computation and that doesn't affect the end results. It will be removed in a future version."
270
- deprecate("mask_feature", "1.0.0", deprecation_message, standard_warn=False)
271
- # 1. Check inputs. Raise error if not correct
272
- height = height or self.transformer.config.sample_size * self.vae_scale_factor
273
- width = width or self.transformer.config.sample_size * self.vae_scale_factor
274
- if use_resolution_binning:
275
- if self.transformer.config.sample_size == 32:
276
- aspect_ratio_bin = ASPECT_RATIO_256_BIN
277
- elif self.transformer.config.sample_size == 64:
278
- aspect_ratio_bin = ASPECT_RATIO_512_BIN
279
- elif self.transformer.config.sample_size == 128:
280
- aspect_ratio_bin = ASPECT_RATIO_1024_BIN
281
- elif self.transformer.config.sample_size == 256:
282
- aspect_ratio_bin = ASPECT_RATIO_2048_BIN
283
- else:
284
- raise ValueError("Invalid sample size")
285
- orig_height, orig_width = height, width
286
- height, width = self.classify_height_width_bin(height, width, ratios=aspect_ratio_bin)
287
-
288
- self.check_inputs(
289
- prompt,
290
- height,
291
- width,
292
- negative_prompt,
293
- callback_steps,
294
- prompt_embeds,
295
- negative_prompt_embeds,
296
- prompt_attention_mask,
297
- negative_prompt_attention_mask,
298
- )
299
-
300
- # 2. Default height and width to transformer
301
- if prompt is not None and isinstance(prompt, str):
302
- batch_size = 1
303
- elif prompt is not None and isinstance(prompt, list):
304
- batch_size = len(prompt)
305
- else:
306
- batch_size = prompt_embeds.shape[0]
307
-
308
- device = self._execution_device
309
-
310
- # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
311
- # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
312
- # corresponds to doing no classifier free guidance.
313
- do_classifier_free_guidance = guidance_scale > 1.0
314
-
315
- # 3. Encode input prompt
316
- (
317
- prompt_embeds,
318
- prompt_attention_mask,
319
- negative_prompt_embeds,
320
- negative_prompt_attention_mask,
321
- ) = self.encode_prompt(
322
- prompt,
323
- do_classifier_free_guidance,
324
- negative_prompt=negative_prompt,
325
- num_images_per_prompt=num_images_per_prompt,
326
- device=device,
327
- prompt_embeds=prompt_embeds,
328
- negative_prompt_embeds=negative_prompt_embeds,
329
- prompt_attention_mask=prompt_attention_mask,
330
- negative_prompt_attention_mask=negative_prompt_attention_mask,
331
- clean_caption=clean_caption,
332
- max_sequence_length=max_sequence_length,
333
- )
334
- if do_classifier_free_guidance:
335
- prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
336
- prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask], dim=0)
337
-
338
- # 4. Prepare timesteps
339
- timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
340
-
341
- # 5. Prepare latents.
342
- latent_channels = self.transformer.config.in_channels
343
- latents = self.prepare_latents(
344
- batch_size * num_images_per_prompt,
345
- latent_channels,
346
- height,
347
- width,
348
- prompt_embeds.dtype,
349
- device,
350
- generator,
351
- latents,
352
- )
353
-
354
- # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
355
- extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
356
-
357
- # 6.1 Prepare micro-conditions.
358
- added_cond_kwargs = {"resolution": None, "aspect_ratio": None}
359
- if self.transformer.config.sample_size == 128:
360
- resolution = torch.tensor([height, width]).repeat(batch_size * num_images_per_prompt, 1)
361
- aspect_ratio = torch.tensor([float(height / width)]).repeat(batch_size * num_images_per_prompt, 1)
362
- resolution = resolution.to(dtype=prompt_embeds.dtype, device=device)
363
- aspect_ratio = aspect_ratio.to(dtype=prompt_embeds.dtype, device=device)
364
-
365
- if do_classifier_free_guidance:
366
- resolution = torch.cat([resolution, resolution], dim=0)
367
- aspect_ratio = torch.cat([aspect_ratio, aspect_ratio], dim=0)
368
-
369
- added_cond_kwargs = {"resolution": resolution, "aspect_ratio": aspect_ratio}
370
-
371
- # 7. Denoising loop
372
- num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
373
-
374
- with self.progress_bar(total=num_inference_steps) as progress_bar:
375
- for i, t in enumerate(timesteps):
376
- latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
377
- latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
378
-
379
- current_timestep = t
380
- if not torch.is_tensor(current_timestep):
381
- # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
382
- # This would be a good case for the `match` statement (Python 3.10+)
383
- is_mps = latent_model_input.device.type == "mps"
384
- if isinstance(current_timestep, float):
385
- dtype = torch.float32 if is_mps else torch.float64
386
- else:
387
- dtype = torch.int32 if is_mps else torch.int64
388
- current_timestep = torch.tensor([current_timestep], dtype=dtype, device=latent_model_input.device)
389
- elif len(current_timestep.shape) == 0:
390
- current_timestep = current_timestep[None].to(latent_model_input.device)
391
- # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
392
- current_timestep = current_timestep.expand(latent_model_input.shape[0])
393
-
394
- # predict noise model_output
395
- noise_pred = self.transformer(
396
- latent_model_input,
397
- encoder_hidden_states=prompt_embeds,
398
- encoder_attention_mask=prompt_attention_mask,
399
- timestep=current_timestep,
400
- added_cond_kwargs=added_cond_kwargs,
401
- return_dict=False,
402
- )[0]
403
-
404
- # perform guidance
405
- if do_classifier_free_guidance:
406
- noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
407
- noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
408
-
409
- # learned sigma
410
- if self.transformer.config.out_channels // 2 == latent_channels:
411
- noise_pred = noise_pred.chunk(2, dim=1)[0]
412
- else:
413
- noise_pred = noise_pred
414
-
415
- # compute previous image: x_t -> x_t-1
416
- if num_inference_steps == 1:
417
- latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).pred_original_sample
418
- else:
419
- latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
420
-
421
- # call the callback, if provided
422
- if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
423
- progress_bar.update()
424
- if callback is not None and i % callback_steps == 0:
425
- step_idx = i // getattr(self.scheduler, "order", 1)
426
- callback(step_idx, t, latents)
427
-
428
- if not output_type == "latent":
429
- image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
430
- if use_resolution_binning:
431
- image = self.resize_and_crop_tensor(image, orig_width, orig_height)
432
- else:
433
- image = latents
434
-
435
- if not output_type == "latent":
436
- image = self.image_processor.postprocess(image, output_type=output_type)
437
-
438
- # Offload all models
439
- self.maybe_free_model_hooks()
440
-
441
- if not return_dict:
442
- return (image,)
443
-
444
- return ImagePipelineOutput(images=image)
445
-
446
-
447
- class PixArtSigmaPipeline(PixArtAlphaPipeline):
448
- r"""
449
- tmp Pipeline for text-to-image generation using PixArt-Sigma.
450
- """
451
-
452
- def __init__(
453
- self,
454
- tokenizer: T5Tokenizer,
455
- text_encoder: T5EncoderModel,
456
- vae: AutoencoderKL,
457
- transformer: Transformer2DModel,
458
- scheduler: DPMSolverMultistepScheduler,
459
- ):
460
- super().__init__(tokenizer, text_encoder, vae, transformer, scheduler)
461
-
462
- self.register_modules(
463
- tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, transformer=transformer, scheduler=scheduler
464
- )
465
-
466
- self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
467
- self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
468
-
469
-
470
- def pixart_sigma_init_patched_inputs(self, norm_type):
471
- assert self.config.sample_size is not None, "Transformer2DModel over patched input must provide sample_size"
472
-
473
- self.height = self.config.sample_size
474
- self.width = self.config.sample_size
475
-
476
- self.patch_size = self.config.patch_size
477
- interpolation_scale = (
478
- self.config.interpolation_scale
479
- if self.config.interpolation_scale is not None
480
- else max(self.config.sample_size // 64, 1)
481
- )
482
- self.pos_embed = PatchEmbed(
483
- height=self.config.sample_size,
484
- width=self.config.sample_size,
485
- patch_size=self.config.patch_size,
486
- in_channels=self.in_channels,
487
- embed_dim=self.inner_dim,
488
- interpolation_scale=interpolation_scale,
489
- )
490
-
491
- self.transformer_blocks = nn.ModuleList(
492
- [
493
- BasicTransformerBlock(
494
- self.inner_dim,
495
- self.config.num_attention_heads,
496
- self.config.attention_head_dim,
497
- dropout=self.config.dropout,
498
- cross_attention_dim=self.config.cross_attention_dim,
499
- activation_fn=self.config.activation_fn,
500
- num_embeds_ada_norm=self.config.num_embeds_ada_norm,
501
- attention_bias=self.config.attention_bias,
502
- only_cross_attention=self.config.only_cross_attention,
503
- double_self_attention=self.config.double_self_attention,
504
- upcast_attention=self.config.upcast_attention,
505
- norm_type=norm_type,
506
- norm_elementwise_affine=self.config.norm_elementwise_affine,
507
- norm_eps=self.config.norm_eps,
508
- attention_type=self.config.attention_type,
509
- )
510
- for _ in range(self.config.num_layers)
511
- ]
512
- )
513
-
514
- if self.config.norm_type != "ada_norm_single":
515
- self.norm_out = nn.LayerNorm(self.inner_dim, elementwise_affine=False, eps=1e-6)
516
- self.proj_out_1 = nn.Linear(self.inner_dim, 2 * self.inner_dim)
517
- self.proj_out_2 = nn.Linear(
518
- self.inner_dim, self.config.patch_size * self.config.patch_size * self.out_channels
519
- )
520
- elif self.config.norm_type == "ada_norm_single":
521
- self.norm_out = nn.LayerNorm(self.inner_dim, elementwise_affine=False, eps=1e-6)
522
- self.scale_shift_table = nn.Parameter(torch.randn(2, self.inner_dim) / self.inner_dim ** 0.5)
523
- self.proj_out = nn.Linear(
524
- self.inner_dim, self.config.patch_size * self.config.patch_size * self.out_channels
525
- )
526
-
527
- # PixArt-Sigma blocks.
528
- self.adaln_single = None
529
- self.use_additional_conditions = False
530
- if self.config.norm_type == "ada_norm_single":
531
- # TODO(Sayak, PVP) clean this, PixArt-Sigma doesn't use additional_conditions anymore
532
- # additional conditions until we find better name
533
- self.adaln_single = AdaLayerNormSingle(
534
- self.inner_dim, use_additional_conditions=self.use_additional_conditions
535
- )
536
-
537
- self.caption_projection = None
538
- if self.caption_channels is not None:
539
- self.caption_projection = PixArtAlphaTextProjection(
540
- in_features=self.caption_channels, hidden_size=self.inner_dim
541
- )