Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -840,39 +840,66 @@ def handsome_images_generations():
|
|
| 840 |
|
| 841 |
response_data = {}
|
| 842 |
|
| 843 |
-
if "stable-diffusion" in model_name or model_name in ["black-forest-labs/FLUX.1-schnell", "Pro/black-forest-labs/FLUX.1-schnell"]:
|
| 844 |
|
| 845 |
siliconflow_data = {
|
| 846 |
"model": model_name,
|
| 847 |
"prompt": data.get("prompt"),
|
| 848 |
-
|
| 849 |
-
"prompt_enhancement": data.get("prompt_enhancement", False),
|
| 850 |
}
|
| 851 |
-
seed = data.get("seed")
|
| 852 |
-
if isinstance(seed, int) and 0 < seed < 9999999999:
|
| 853 |
-
siliconflow_data["seed"] = seed
|
| 854 |
|
| 855 |
-
if model_name
|
| 856 |
-
|
| 857 |
-
|
| 858 |
-
|
| 859 |
-
|
| 860 |
-
|
| 861 |
-
|
| 862 |
-
|
| 863 |
-
|
| 864 |
-
|
| 865 |
-
|
| 866 |
-
|
| 867 |
-
|
| 868 |
-
|
| 869 |
-
|
| 870 |
-
|
| 871 |
-
|
| 872 |
-
|
| 873 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 874 |
# Validate image_size
|
| 875 |
-
if siliconflow_data["image_size"] not in ["1024x1024", "512x1024", "768x512", "768x1024", "1024x576", "576x1024"]:
|
| 876 |
siliconflow_data["image_size"] = "1024x1024"
|
| 877 |
|
| 878 |
try:
|
|
@@ -1008,45 +1035,71 @@ def handsome_chat_completions():
|
|
| 1008 |
siliconflow_data = {
|
| 1009 |
"model": model_name,
|
| 1010 |
"prompt": user_content,
|
| 1011 |
-
|
| 1012 |
-
"batch_size": 1,
|
| 1013 |
-
"num_inference_steps": 20,
|
| 1014 |
-
"guidance_scale": 7.5,
|
| 1015 |
-
"prompt_enhancement": False,
|
| 1016 |
}
|
| 1017 |
-
|
| 1018 |
-
|
| 1019 |
-
siliconflow_data["
|
| 1020 |
-
|
| 1021 |
-
siliconflow_data["
|
| 1022 |
-
|
| 1023 |
-
siliconflow_data["
|
| 1024 |
-
|
| 1025 |
-
|
| 1026 |
-
|
| 1027 |
-
|
| 1028 |
-
|
| 1029 |
-
|
| 1030 |
-
|
| 1031 |
-
|
| 1032 |
-
|
| 1033 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1034 |
siliconflow_data["batch_size"] = 1
|
| 1035 |
-
|
| 1036 |
-
siliconflow_data["
|
| 1037 |
-
|
| 1038 |
-
if siliconflow_data["num_inference_steps"] < 1:
|
| 1039 |
-
siliconflow_data["num_inference_steps"] = 1
|
| 1040 |
-
if siliconflow_data["num_inference_steps"] > 50:
|
| 1041 |
-
siliconflow_data["num_inference_steps"] = 50
|
| 1042 |
|
| 1043 |
-
|
| 1044 |
-
|
| 1045 |
-
|
| 1046 |
-
|
| 1047 |
-
|
| 1048 |
-
|
| 1049 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1050 |
|
| 1051 |
try:
|
| 1052 |
start_time = time.time()
|
|
@@ -1151,33 +1204,14 @@ def handsome_chat_completions():
|
|
| 1151 |
"index": 0,
|
| 1152 |
"delta": {
|
| 1153 |
"role": "assistant",
|
| 1154 |
-
"content":
|
| 1155 |
},
|
| 1156 |
-
"finish_reason": None
|
| 1157 |
-
}
|
| 1158 |
-
]
|
| 1159 |
-
}
|
| 1160 |
-
yield f"data: {json.dumps(error_chunk_data)}\n\n".encode('utf-8')
|
| 1161 |
-
end_chunk_data = {
|
| 1162 |
-
"id": f"chatcmpl-{uuid.uuid4()}",
|
| 1163 |
-
"object": "chat.completion.chunk",
|
| 1164 |
-
"created": int(time.time()),
|
| 1165 |
-
"model": model_name,
|
| 1166 |
-
"choices": [
|
| 1167 |
-
{
|
| 1168 |
-
"index": 0,
|
| 1169 |
-
"delta": {},
|
| 1170 |
"finish_reason": "stop"
|
| 1171 |
}
|
| 1172 |
]
|
| 1173 |
}
|
| 1174 |
-
yield f"data: {json.dumps(
|
| 1175 |
-
|
| 1176 |
-
logging.info(
|
| 1177 |
-
f"使用的key: {api_key}, "
|
| 1178 |
-
f"使用的模型: {model_name}"
|
| 1179 |
-
)
|
| 1180 |
-
yield "data: [DONE]\n\n".encode('utf-8')
|
| 1181 |
return Response(stream_with_context(generate()), content_type='text/event-stream')
|
| 1182 |
else:
|
| 1183 |
response.raise_for_status()
|
|
@@ -1246,15 +1280,11 @@ def handsome_chat_completions():
|
|
| 1246 |
token_counts.append(0)
|
| 1247 |
|
| 1248 |
return jsonify(response_data)
|
| 1249 |
-
except requests.exceptions.RequestException as e:
|
| 1250 |
-
logging.error(f"请求转发异常: {e}")
|
| 1251 |
-
return jsonify({"error": str(e)}), 500
|
| 1252 |
else:
|
| 1253 |
-
# Handle text completion
|
| 1254 |
try:
|
| 1255 |
start_time = time.time()
|
| 1256 |
response = requests.post(
|
| 1257 |
-
|
| 1258 |
headers=headers,
|
| 1259 |
json=data,
|
| 1260 |
timeout=120,
|
|
@@ -1262,45 +1292,16 @@ def handsome_chat_completions():
|
|
| 1262 |
)
|
| 1263 |
|
| 1264 |
if response.status_code == 429:
|
| 1265 |
-
|
| 1266 |
-
|
| 1267 |
if data.get("stream", False):
|
| 1268 |
def generate():
|
| 1269 |
-
first_chunk_time = None
|
| 1270 |
-
full_response_content = ""
|
| 1271 |
try:
|
| 1272 |
-
|
|
|
|
| 1273 |
if chunk:
|
| 1274 |
-
|
| 1275 |
-
|
| 1276 |
-
try:
|
| 1277 |
-
json_chunk = json.loads(chunk.lstrip("data: "))
|
| 1278 |
-
if "choices" in json_chunk and json_chunk["choices"]:
|
| 1279 |
-
delta = json_chunk["choices"][0].get("delta", {})
|
| 1280 |
-
content = delta.get("content", "")
|
| 1281 |
-
full_response_content += content
|
| 1282 |
-
yield f"data: {json.dumps(json_chunk)}\n\n".encode('utf-8')
|
| 1283 |
-
except json.JSONDecodeError:
|
| 1284 |
-
logging.error(f"JSON解析失败: {chunk}")
|
| 1285 |
-
|
| 1286 |
-
end_chunk_data = {
|
| 1287 |
-
"id": f"chatcmpl-{uuid.uuid4()}",
|
| 1288 |
-
"object": "chat.completion.chunk",
|
| 1289 |
-
"created": int(time.time()),
|
| 1290 |
-
"model": model_name,
|
| 1291 |
-
"choices": [
|
| 1292 |
-
{
|
| 1293 |
-
"index": 0,
|
| 1294 |
-
"delta": {},
|
| 1295 |
-
"finish_reason": "stop"
|
| 1296 |
-
}
|
| 1297 |
-
]
|
| 1298 |
-
}
|
| 1299 |
-
yield f"data: {json.dumps(end_chunk_data)}\n\n".encode('utf-8')
|
| 1300 |
-
|
| 1301 |
-
with data_lock:
|
| 1302 |
-
request_timestamps.append(time.time())
|
| 1303 |
-
token_counts.append(0)
|
| 1304 |
except requests.exceptions.RequestException as e:
|
| 1305 |
logging.error(f"请求转发异常: {e}")
|
| 1306 |
error_chunk_data = {
|
|
@@ -1313,40 +1314,21 @@ def handsome_chat_completions():
|
|
| 1313 |
"index": 0,
|
| 1314 |
"delta": {
|
| 1315 |
"role": "assistant",
|
| 1316 |
-
"content":
|
| 1317 |
},
|
| 1318 |
-
"finish_reason":
|
| 1319 |
}
|
| 1320 |
]
|
| 1321 |
-
|
| 1322 |
yield f"data: {json.dumps(error_chunk_data)}\n\n".encode('utf-8')
|
| 1323 |
-
|
| 1324 |
-
"id": f"chatcmpl-{uuid.uuid4()}",
|
| 1325 |
-
"object": "chat.completion.chunk",
|
| 1326 |
-
"created": int(time.time()),
|
| 1327 |
-
"model": model_name,
|
| 1328 |
-
"choices": [
|
| 1329 |
-
{
|
| 1330 |
-
"index": 0,
|
| 1331 |
-
"delta": {},
|
| 1332 |
-
"finish_reason": "stop"
|
| 1333 |
-
}
|
| 1334 |
-
]
|
| 1335 |
-
}
|
| 1336 |
-
yield f"data: {json.dumps(end_chunk_data)}\n\n".encode('utf-8')
|
| 1337 |
-
logging.info(
|
| 1338 |
-
f"使用的key: {api_key}, "
|
| 1339 |
-
f"使用的模型: {model_name}"
|
| 1340 |
-
)
|
| 1341 |
-
yield "data: [DONE]\n\n".encode('utf-8')
|
| 1342 |
return Response(stream_with_context(generate()), content_type='text/event-stream')
|
| 1343 |
-
|
| 1344 |
else:
|
| 1345 |
response.raise_for_status()
|
| 1346 |
end_time = time.time()
|
| 1347 |
response_json = response.json()
|
| 1348 |
total_time = end_time - start_time
|
| 1349 |
-
|
| 1350 |
try:
|
| 1351 |
choices = response_json.get("choices", [])
|
| 1352 |
if choices and isinstance(choices[0], dict):
|
|
@@ -1406,20 +1388,21 @@ def handsome_chat_completions():
|
|
| 1406 |
}
|
| 1407 |
]
|
| 1408 |
}
|
| 1409 |
-
|
| 1410 |
logging.info(
|
| 1411 |
-
|
| 1412 |
-
|
| 1413 |
-
|
| 1414 |
)
|
|
|
|
| 1415 |
with data_lock:
|
| 1416 |
-
|
| 1417 |
-
|
|
|
|
| 1418 |
return jsonify(response_data)
|
| 1419 |
-
|
| 1420 |
except requests.exceptions.RequestException as e:
|
| 1421 |
-
|
| 1422 |
-
|
| 1423 |
|
| 1424 |
if __name__ == '__main__':
|
| 1425 |
import json
|
|
|
|
| 840 |
|
| 841 |
response_data = {}
|
| 842 |
|
| 843 |
+
if "stable-diffusion" in model_name or model_name in ["black-forest-labs/FLUX.1-schnell", "Pro/black-forest-labs/FLUX.1-schnell","black-forest-labs/FLUX.1-dev", "black-forest-labs/FLUX.1-pro"]:
|
| 844 |
|
| 845 |
siliconflow_data = {
|
| 846 |
"model": model_name,
|
| 847 |
"prompt": data.get("prompt"),
|
| 848 |
+
|
|
|
|
| 849 |
}
|
|
|
|
|
|
|
|
|
|
| 850 |
|
| 851 |
+
if model_name == "black-forest-labs/FLUX.1-pro":
|
| 852 |
+
siliconflow_data["width"] = data.get("width", 1024)
|
| 853 |
+
siliconflow_data["height"] = data.get("height", 768)
|
| 854 |
+
siliconflow_data["prompt_upsampling"] = data.get("prompt_upsampling", False)
|
| 855 |
+
siliconflow_data["image_prompt"] = data.get("image_prompt")
|
| 856 |
+
siliconflow_data["steps"] = data.get("steps", 20)
|
| 857 |
+
siliconflow_data["guidance"] = data.get("guidance", 3)
|
| 858 |
+
siliconflow_data["safety_tolerance"] = data.get("safety_tolerance", 2)
|
| 859 |
+
siliconflow_data["interval"] = data.get("interval", 2)
|
| 860 |
+
siliconflow_data["output_format"] = data.get("output_format", "png")
|
| 861 |
+
|
| 862 |
+
if siliconflow_data["width"] < 256 or siliconflow_data["width"] > 1440 or siliconflow_data["width"] % 32 != 0:
|
| 863 |
+
siliconflow_data["width"] = 1024
|
| 864 |
+
if siliconflow_data["height"] < 256 or siliconflow_data["height"] > 1440 or siliconflow_data["height"] % 32 != 0:
|
| 865 |
+
siliconflow_data["height"] = 768
|
| 866 |
+
|
| 867 |
+
if siliconflow_data["steps"] < 1 or siliconflow_data["steps"] > 50:
|
| 868 |
+
siliconflow_data["steps"] = 20
|
| 869 |
+
if siliconflow_data["guidance"] < 1.5 or siliconflow_data["guidance"] > 5:
|
| 870 |
+
siliconflow_data["guidance"] = 3
|
| 871 |
+
if siliconflow_data["safety_tolerance"] < 0 or siliconflow_data["safety_tolerance"] > 6:
|
| 872 |
+
siliconflow_data["safety_tolerance"] = 2
|
| 873 |
+
if siliconflow_data["interval"] < 1 or siliconflow_data["interval"] > 4 :
|
| 874 |
+
siliconflow_data["interval"] = 2
|
| 875 |
+
else:
|
| 876 |
+
siliconflow_data["image_size"] = data.get("image_size", "1024x1024") # Use 'image_size' directly
|
| 877 |
+
siliconflow_data["prompt_enhancement"] = data.get("prompt_enhancement", False)
|
| 878 |
+
seed = data.get("seed")
|
| 879 |
+
if isinstance(seed, int) and 0 < seed < 9999999999:
|
| 880 |
+
siliconflow_data["seed"] = seed
|
| 881 |
+
|
| 882 |
+
if model_name not in ["black-forest-labs/FLUX.1-schnell", "Pro/black-forest-labs/FLUX.1-schnell"]:
|
| 883 |
+
siliconflow_data["batch_size"] = data.get("n", 1)
|
| 884 |
+
siliconflow_data["num_inference_steps"] = data.get("steps", 20)
|
| 885 |
+
siliconflow_data["guidance_scale"] = data.get("guidance_scale", 7.5)
|
| 886 |
+
siliconflow_data["negative_prompt"] = data.get("negative_prompt")
|
| 887 |
+
if siliconflow_data["batch_size"] < 1:
|
| 888 |
+
siliconflow_data["batch_size"] = 1
|
| 889 |
+
if siliconflow_data["batch_size"] > 4:
|
| 890 |
+
siliconflow_data["batch_size"] = 4
|
| 891 |
+
|
| 892 |
+
if siliconflow_data["num_inference_steps"] < 1:
|
| 893 |
+
siliconflow_data["num_inference_steps"] = 1
|
| 894 |
+
if siliconflow_data["num_inference_steps"] > 50:
|
| 895 |
+
siliconflow_data["num_inference_steps"] = 50
|
| 896 |
+
|
| 897 |
+
if siliconflow_data["guidance_scale"] < 0:
|
| 898 |
+
siliconflow_data["guidance_scale"] = 0
|
| 899 |
+
if siliconflow_data["guidance_scale"] > 100:
|
| 900 |
+
siliconflow_data["guidance_scale"] = 100
|
| 901 |
# Validate image_size
|
| 902 |
+
if "image_size" in siliconflow_data and siliconflow_data["image_size"] not in ["1024x1024", "512x1024", "768x512", "768x1024", "1024x576", "576x1024","960x1280", "720x1440", "720x1280"]:
|
| 903 |
siliconflow_data["image_size"] = "1024x1024"
|
| 904 |
|
| 905 |
try:
|
|
|
|
| 1035 |
siliconflow_data = {
|
| 1036 |
"model": model_name,
|
| 1037 |
"prompt": user_content,
|
| 1038 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1039 |
}
|
| 1040 |
+
if model_name == "black-forest-labs/FLUX.1-pro":
|
| 1041 |
+
siliconflow_data["width"] = data.get("width", 1024)
|
| 1042 |
+
siliconflow_data["height"] = data.get("height", 768)
|
| 1043 |
+
siliconflow_data["prompt_upsampling"] = data.get("prompt_upsampling", False)
|
| 1044 |
+
siliconflow_data["image_prompt"] = data.get("image_prompt")
|
| 1045 |
+
siliconflow_data["steps"] = data.get("steps", 20)
|
| 1046 |
+
siliconflow_data["guidance"] = data.get("guidance", 3)
|
| 1047 |
+
siliconflow_data["safety_tolerance"] = data.get("safety_tolerance", 2)
|
| 1048 |
+
siliconflow_data["interval"] = data.get("interval", 2)
|
| 1049 |
+
siliconflow_data["output_format"] = data.get("output_format", "png")
|
| 1050 |
+
|
| 1051 |
+
if siliconflow_data["width"] < 256 or siliconflow_data["width"] > 1440 or siliconflow_data["width"] % 32 != 0:
|
| 1052 |
+
siliconflow_data["width"] = 1024
|
| 1053 |
+
if siliconflow_data["height"] < 256 or siliconflow_data["height"] > 1440 or siliconflow_data["height"] % 32 != 0:
|
| 1054 |
+
siliconflow_data["height"] = 768
|
| 1055 |
+
|
| 1056 |
+
if siliconflow_data["steps"] < 1 or siliconflow_data["steps"] > 50:
|
| 1057 |
+
siliconflow_data["steps"] = 20
|
| 1058 |
+
if siliconflow_data["guidance"] < 1.5 or siliconflow_data["guidance"] > 5:
|
| 1059 |
+
siliconflow_data["guidance"] = 3
|
| 1060 |
+
if siliconflow_data["safety_tolerance"] < 0 or siliconflow_data["safety_tolerance"] > 6:
|
| 1061 |
+
siliconflow_data["safety_tolerance"] = 2
|
| 1062 |
+
if siliconflow_data["interval"] < 1 or siliconflow_data["interval"] > 4 :
|
| 1063 |
+
siliconflow_data["interval"] = 2
|
| 1064 |
+
else:
|
| 1065 |
+
siliconflow_data["image_size"] = "1024x1024"
|
| 1066 |
siliconflow_data["batch_size"] = 1
|
| 1067 |
+
siliconflow_data["num_inference_steps"] = 20
|
| 1068 |
+
siliconflow_data["guidance_scale"] = 7.5
|
| 1069 |
+
siliconflow_data["prompt_enhancement"] = False
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1070 |
|
| 1071 |
+
if data.get("size"):
|
| 1072 |
+
siliconflow_data["image_size"] = data.get("size")
|
| 1073 |
+
if data.get("n"):
|
| 1074 |
+
siliconflow_data["batch_size"] = data.get("n")
|
| 1075 |
+
if data.get("steps"):
|
| 1076 |
+
siliconflow_data["num_inference_steps"] = data.get("steps")
|
| 1077 |
+
if data.get("guidance_scale"):
|
| 1078 |
+
siliconflow_data["guidance_scale"] = data.get("guidance_scale")
|
| 1079 |
+
if data.get("negative_prompt"):
|
| 1080 |
+
siliconflow_data["negative_prompt"] = data.get("negative_prompt")
|
| 1081 |
+
if data.get("seed"):
|
| 1082 |
+
siliconflow_data["seed"] = data.get("seed")
|
| 1083 |
+
if data.get("prompt_enhancement"):
|
| 1084 |
+
siliconflow_data["prompt_enhancement"] = data.get("prompt_enhancement")
|
| 1085 |
+
|
| 1086 |
+
if siliconflow_data["batch_size"] < 1:
|
| 1087 |
+
siliconflow_data["batch_size"] = 1
|
| 1088 |
+
if siliconflow_data["batch_size"] > 4:
|
| 1089 |
+
siliconflow_data["batch_size"] = 4
|
| 1090 |
+
|
| 1091 |
+
if siliconflow_data["num_inference_steps"] < 1:
|
| 1092 |
+
siliconflow_data["num_inference_steps"] = 1
|
| 1093 |
+
if siliconflow_data["num_inference_steps"] > 50:
|
| 1094 |
+
siliconflow_data["num_inference_steps"] = 50
|
| 1095 |
+
|
| 1096 |
+
if siliconflow_data["guidance_scale"] < 0:
|
| 1097 |
+
siliconflow_data["guidance_scale"] = 0
|
| 1098 |
+
if siliconflow_data["guidance_scale"] > 100:
|
| 1099 |
+
siliconflow_data["guidance_scale"] = 100
|
| 1100 |
+
|
| 1101 |
+
if siliconflow_data["image_size"] not in ["1024x1024", "512x1024", "768x512", "768x1024", "1024x576", "576x1024", "960x1280", "720x1440", "720x1280"]:
|
| 1102 |
+
siliconflow_data["image_size"] = "1024x1024"
|
| 1103 |
|
| 1104 |
try:
|
| 1105 |
start_time = time.time()
|
|
|
|
| 1204 |
"index": 0,
|
| 1205 |
"delta": {
|
| 1206 |
"role": "assistant",
|
| 1207 |
+
"content": "Failed to process image data"
|
| 1208 |
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1209 |
"finish_reason": "stop"
|
| 1210 |
}
|
| 1211 |
]
|
| 1212 |
}
|
| 1213 |
+
yield f"data: {json.dumps(error_chunk_data)}\n\n".encode('utf-8')
|
| 1214 |
+
yield "data: [DONE]\n\n".encode('utf-8')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1215 |
return Response(stream_with_context(generate()), content_type='text/event-stream')
|
| 1216 |
else:
|
| 1217 |
response.raise_for_status()
|
|
|
|
| 1280 |
token_counts.append(0)
|
| 1281 |
|
| 1282 |
return jsonify(response_data)
|
|
|
|
|
|
|
|
|
|
| 1283 |
else:
|
|
|
|
| 1284 |
try:
|
| 1285 |
start_time = time.time()
|
| 1286 |
response = requests.post(
|
| 1287 |
+
"https://api.siliconflow.cn/v1/chat/completions",
|
| 1288 |
headers=headers,
|
| 1289 |
json=data,
|
| 1290 |
timeout=120,
|
|
|
|
| 1292 |
)
|
| 1293 |
|
| 1294 |
if response.status_code == 429:
|
| 1295 |
+
return jsonify(response.json()), 429
|
| 1296 |
+
|
| 1297 |
if data.get("stream", False):
|
| 1298 |
def generate():
|
|
|
|
|
|
|
| 1299 |
try:
|
| 1300 |
+
response.raise_for_status()
|
| 1301 |
+
for chunk in response.iter_lines():
|
| 1302 |
if chunk:
|
| 1303 |
+
chunk = chunk.decode('utf-8')
|
| 1304 |
+
yield f"{chunk}\n\n".encode('utf-8')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1305 |
except requests.exceptions.RequestException as e:
|
| 1306 |
logging.error(f"请求转发异常: {e}")
|
| 1307 |
error_chunk_data = {
|
|
|
|
| 1314 |
"index": 0,
|
| 1315 |
"delta": {
|
| 1316 |
"role": "assistant",
|
| 1317 |
+
"content": "Failed to process data"
|
| 1318 |
},
|
| 1319 |
+
"finish_reason": "stop"
|
| 1320 |
}
|
| 1321 |
]
|
| 1322 |
+
}
|
| 1323 |
yield f"data: {json.dumps(error_chunk_data)}\n\n".encode('utf-8')
|
| 1324 |
+
yield "data: [DONE]\n\n".encode('utf-8')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1325 |
return Response(stream_with_context(generate()), content_type='text/event-stream')
|
|
|
|
| 1326 |
else:
|
| 1327 |
response.raise_for_status()
|
| 1328 |
end_time = time.time()
|
| 1329 |
response_json = response.json()
|
| 1330 |
total_time = end_time - start_time
|
| 1331 |
+
|
| 1332 |
try:
|
| 1333 |
choices = response_json.get("choices", [])
|
| 1334 |
if choices and isinstance(choices[0], dict):
|
|
|
|
| 1388 |
}
|
| 1389 |
]
|
| 1390 |
}
|
| 1391 |
+
|
| 1392 |
logging.info(
|
| 1393 |
+
f"使用的key: {api_key}, "
|
| 1394 |
+
f"总共用时: {total_time:.4f}秒, "
|
| 1395 |
+
f"使用的模型: {model_name}"
|
| 1396 |
)
|
| 1397 |
+
|
| 1398 |
with data_lock:
|
| 1399 |
+
request_timestamps.append(time.time())
|
| 1400 |
+
token_counts.append(0)
|
| 1401 |
+
|
| 1402 |
return jsonify(response_data)
|
|
|
|
| 1403 |
except requests.exceptions.RequestException as e:
|
| 1404 |
+
logging.error(f"请求转发异常: {e}")
|
| 1405 |
+
return jsonify({"error": str(e)}), 500
|
| 1406 |
|
| 1407 |
if __name__ == '__main__':
|
| 1408 |
import json
|