Spaces:
Running
Running
import os | |
import time | |
import logging | |
import requests | |
import json | |
import random | |
import uuid | |
import concurrent.futures | |
import threading | |
import base64 | |
import io | |
from PIL import Image | |
from datetime import datetime, timedelta | |
from apscheduler.schedulers.background import BackgroundScheduler | |
from flask import Flask, request, jsonify, Response, stream_with_context | |
os.environ['TZ'] = 'Asia/Shanghai' | |
time.tzset() | |
logging.basicConfig(level=logging.INFO, | |
format='%(asctime)s - %(levelname)s - %(message)s') | |
API_ENDPOINT = "https://api-st.siliconflow.cn/v1/user/info" | |
TEST_MODEL_ENDPOINT = "https://api-st.siliconflow.cn/v1/chat/completions" | |
MODELS_ENDPOINT = "https://api-st.siliconflow.cn/v1/models" | |
EMBEDDINGS_ENDPOINT = "https://api-st.siliconflow.cn/v1/embeddings" | |
app = Flask(__name__) | |
text_models = [] | |
free_text_models = [] | |
embedding_models = [] | |
free_embedding_models = [] | |
image_models = [] | |
free_image_models = [] | |
invalid_keys_global = [] | |
free_keys_global = [] | |
unverified_keys_global = [] | |
valid_keys_global = [] | |
executor = concurrent.futures.ThreadPoolExecutor(max_workers=1000) | |
model_key_indices = {} | |
request_timestamps = [] | |
token_counts = [] | |
data_lock = threading.Lock() | |
def get_credit_summary(api_key): | |
""" | |
使用 API 密钥获取额度信息。 | |
""" | |
headers = { | |
"Authorization": f"Bearer {api_key}", | |
"Content-Type": "application/json" | |
} | |
try: | |
response = requests.get(API_ENDPOINT, headers=headers) | |
response.raise_for_status() | |
data = response.json().get("data", {}) | |
total_balance = data.get("totalBalance", 0) | |
return {"total_balance": float(total_balance)} | |
except requests.exceptions.RequestException as e: | |
logging.error(f"获取额度信息失败,API Key:{api_key},错误信息:{e}") | |
return None | |
FREE_MODEL_TEST_KEY = ( | |
"sk-bmjbjzleaqfgtqfzmcnsbagxrlohriadnxqrzfocbizaxukw" | |
) | |
FREE_IMAGE_LIST = [ | |
"stabilityai/stable-diffusion-3-5-large", | |
"black-forest-labs/FLUX.1-schnell", | |
"stabilityai/stable-diffusion-3-medium", | |
"stabilityai/stable-diffusion-xl-base-1.0", | |
"stabilityai/stable-diffusion-2-1" | |
] | |
def test_model_availability(api_key, model_name): | |
""" | |
测试指定的模型是否可用。 | |
""" | |
headers = { | |
"Authorization": f"Bearer {api_key}", | |
"Content-Type": "application/json" | |
} | |
try: | |
response = requests.post( | |
TEST_MODEL_ENDPOINT, | |
headers=headers, | |
json={ | |
"model": model_name, | |
"messages": [{"role": "user", "content": "hi"}], | |
"max_tokens": 5, | |
"stream": False | |
}, | |
timeout=5 | |
) | |
if response.status_code == 429 or response.status_code == 200: | |
return True | |
else: | |
return False | |
except requests.exceptions.RequestException as e: | |
logging.error( | |
f"测试模型 {model_name} 可用性失败," | |
f"API Key:{api_key},错误信息:{e}" | |
) | |
return False | |
def refresh_models(): | |
""" | |
刷新模型列表和免费模型列表。 | |
""" | |
global text_models, free_text_models | |
global embedding_models, free_embedding_models | |
global image_models, free_image_models | |
text_models = get_all_models(FREE_MODEL_TEST_KEY, "chat") | |
embedding_models = get_all_models(FREE_MODEL_TEST_KEY, "embedding") | |
image_models = get_all_models(FREE_MODEL_TEST_KEY, "text-to-image") | |
free_text_models = [] | |
free_embedding_models = [] | |
free_image_models = [] | |
ban_models_str = os.environ.get("BAN_MODELS") | |
ban_models = [] | |
if ban_models_str: | |
try: | |
ban_models = json.loads(ban_models_str) | |
if not isinstance(ban_models, list): | |
logging.warning( | |
"环境变量 BAN_MODELS 格式不正确,应为 JSON 数组。" | |
) | |
ban_models = [] | |
except json.JSONDecodeError: | |
logging.warning( | |
"环境变量 BAN_MODELS JSON 解析失败,请检查格式。" | |
) | |
ban_models = [] | |
text_models = [model for model in text_models if model not in ban_models] | |
embedding_models = [model for model in embedding_models if model not in ban_models] | |
image_models = [model for model in image_models if model not in ban_models] | |
with concurrent.futures.ThreadPoolExecutor( | |
max_workers=1000 | |
) as executor: | |
future_to_model = { | |
executor.submit( | |
test_model_availability, | |
FREE_MODEL_TEST_KEY, | |
model | |
): model for model in text_models | |
} | |
for future in concurrent.futures.as_completed(future_to_model): | |
model = future_to_model[future] | |
try: | |
is_free = future.result() | |
if is_free: | |
free_text_models.append(model) | |
except Exception as exc: | |
logging.error(f"模型 {model} 测试生成异常: {exc}") | |
with concurrent.futures.ThreadPoolExecutor( | |
max_workers=1000 | |
) as executor: | |
future_to_model = { | |
executor.submit( | |
test_embedding_model_availability, | |
FREE_MODEL_TEST_KEY, model | |
): model for model in embedding_models | |
} | |
for future in concurrent.futures.as_completed(future_to_model): | |
model = future_to_model[future] | |
try: | |
is_free = future.result() | |
if is_free: | |
free_embedding_models.append(model) | |
except Exception as exc: | |
logging.error(f"模型 {model} 测试生成异常: {exc}") | |
with concurrent.futures.ThreadPoolExecutor( | |
max_workers=1000 | |
) as executor: | |
future_to_model = { | |
executor.submit( | |
test_image_model_availability, | |
FREE_MODEL_TEST_KEY, model | |
): model for model in image_models | |
} | |
for future in concurrent.futures.as_completed(future_to_model): | |
model = future_to_model[future] | |
try: | |
is_free = future.result() | |
if is_free: | |
free_image_models.append(model) | |
except Exception as exc: | |
logging.error(f"模型 {model} 测试生成异常: {exc}") | |
logging.info(f"所有文本模型列表:{text_models}") | |
logging.info(f"免费文本模型列表:{free_text_models}") | |
logging.info(f"所有向量模型列表:{embedding_models}") | |
logging.info(f"免费向量模型列表:{free_embedding_models}") | |
logging.info(f"所有生图模型列表:{image_models}") | |
logging.info(f"免费生图模型列表:{free_image_models}") | |
def test_embedding_model_availability(api_key, model_name): | |
""" | |
测试指定的向量模型是否可用。 | |
""" | |
headers = { | |
"Authorization": f"Bearer {api_key}", | |
"Content-Type": "application/json" | |
} | |
try: | |
response = requests.post( | |
EMBEDDINGS_ENDPOINT, | |
headers=headers, | |
json={ | |
"model": model_name, | |
"input": ["hi"], | |
}, | |
timeout=10 | |
) | |
if response.status_code == 429 or response.status_code == 200: | |
return True | |
else: | |
return False | |
except requests.exceptions.RequestException as e: | |
logging.error( | |
f"测试向量模型 {model_name} 可用性失败," | |
f"API Key:{api_key},错误信息:{e}" | |
) | |
return False | |
def test_image_model_availability(api_key, model_name): | |
""" | |
测试指定的图像模型是否在 FREE_IMAGE_LIST 中。 | |
如果在列表中,返回 True,否则返回 False。 | |
""" | |
return model_name in FREE_IMAGE_LIST | |
def load_keys(): | |
""" | |
从环境变量中加载 keys,进行去重, | |
并根据额度和模型可用性进行分类, | |
然后记录到日志中。 | |
使用线程池并发处理每个 key。 | |
""" | |
keys_str = os.environ.get("KEYS") | |
test_model = os.environ.get( | |
"TEST_MODEL", | |
"Pro/google/gemma-2-9b-it" | |
) | |
if keys_str: | |
keys = [key.strip() for key in keys_str.split(',')] | |
unique_keys = list(set(keys)) | |
keys_str = ','.join(unique_keys) | |
os.environ["KEYS"] = keys_str | |
logging.info(f"加载的 keys:{unique_keys}") | |
with concurrent.futures.ThreadPoolExecutor( | |
max_workers=1000 | |
) as executor: | |
future_to_key = { | |
executor.submit( | |
process_key, key, test_model | |
): key for key in unique_keys | |
} | |
invalid_keys = [] | |
free_keys = [] | |
unverified_keys = [] | |
valid_keys = [] | |
for future in concurrent.futures.as_completed( | |
future_to_key | |
): | |
key = future_to_key[future] | |
try: | |
key_type = future.result() | |
if key_type == "invalid": | |
invalid_keys.append(key) | |
elif key_type == "free": | |
free_keys.append(key) | |
elif key_type == "unverified": | |
unverified_keys.append(key) | |
elif key_type == "valid": | |
valid_keys.append(key) | |
except Exception as exc: | |
logging.error(f"处理 KEY {key} 生成异常: {exc}") | |
logging.info(f"无效 KEY:{invalid_keys}") | |
logging.info(f"免费 KEY:{free_keys}") | |
logging.info(f"未实名 KEY:{unverified_keys}") | |
logging.info(f"有效 KEY:{valid_keys}") | |
global invalid_keys_global, free_keys_global | |
global unverified_keys_global, valid_keys_global | |
invalid_keys_global = invalid_keys | |
free_keys_global = free_keys | |
unverified_keys_global = unverified_keys | |
valid_keys_global = valid_keys | |
else: | |
logging.warning("环境变量 KEYS 未设置。") | |
def process_key(key, test_model): | |
""" | |
处理单个 key,判断其类型。 | |
""" | |
credit_summary = get_credit_summary(key) | |
if credit_summary is None: | |
return "invalid" | |
else: | |
total_balance = credit_summary.get("total_balance", 0) | |
if total_balance <= 0: | |
return "free" | |
else: | |
if test_model_availability(key, test_model): | |
return "valid" | |
else: | |
return "unverified" | |
def get_all_models(api_key, sub_type): | |
""" | |
获取所有模型列表。 | |
""" | |
headers = { | |
"Authorization": f"Bearer {api_key}", | |
"Content-Type": "application/json" | |
} | |
try: | |
response = requests.get( | |
MODELS_ENDPOINT, | |
headers=headers, | |
params={"sub_type": sub_type} | |
) | |
response.raise_for_status() | |
data = response.json() | |
if ( | |
isinstance(data, dict) and | |
'data' in data and | |
isinstance(data['data'], list) | |
): | |
return [ | |
model.get("id") for model in data["data"] | |
if isinstance(model, dict) and "id" in model | |
] | |
else: | |
logging.error("获取模型列表失败:响应数据格式不正确") | |
return [] | |
except requests.exceptions.RequestException as e: | |
logging.error( | |
f"获取模型列表失败," | |
f"API Key:{api_key},错误信息:{e}" | |
) | |
return [] | |
except (KeyError, TypeError) as e: | |
logging.error( | |
f"解析模型列表失败," | |
f"API Key:{api_key},错误信息:{e}" | |
) | |
return [] | |
def determine_request_type(model_name, model_list, free_model_list): | |
""" | |
根据用户请求的模型判断请求类型。 | |
""" | |
if model_name in free_model_list: | |
return "free" | |
elif model_name in model_list: | |
return "paid" | |
else: | |
return "unknown" | |
def select_key(request_type, model_name): | |
""" | |
根据请求类型和模型名称选择合适的 KEY, | |
并实现轮询和重试机制。 | |
""" | |
if request_type == "free": | |
available_keys = ( | |
free_keys_global + | |
unverified_keys_global + | |
valid_keys_global | |
) | |
elif request_type == "paid": | |
available_keys = unverified_keys_global + valid_keys_global | |
else: | |
available_keys = ( | |
free_keys_global + | |
unverified_keys_global + | |
valid_keys_global | |
) | |
if not available_keys: | |
return None | |
current_index = model_key_indices.get(model_name, 0) | |
for _ in range(len(available_keys)): | |
key = available_keys[current_index % len(available_keys)] | |
current_index += 1 | |
if key_is_valid(key, request_type): | |
model_key_indices[model_name] = current_index | |
return key | |
else: | |
logging.warning( | |
f"KEY {key} 无效或达到限制,尝试下一个 KEY" | |
) | |
model_key_indices[model_name] = 0 | |
return None | |
def key_is_valid(key, request_type): | |
""" | |
检查 KEY 是否有效, | |
根据不同的请求类型进行不同的检查。 | |
""" | |
if request_type == "invalid": | |
return False | |
credit_summary = get_credit_summary(key) | |
if credit_summary is None: | |
return False | |
total_balance = credit_summary.get("total_balance", 0) | |
if request_type == "free": | |
return True | |
elif request_type == "paid" or request_type == "unverified": | |
return total_balance > 0 | |
else: | |
return False | |
def check_authorization(request): | |
""" | |
检查请求头中的 Authorization 字段 | |
是否匹配环境变量 AUTHORIZATION_KEY。 | |
""" | |
authorization_key = os.environ.get("AUTHORIZATION_KEY") | |
if not authorization_key: | |
logging.warning("环境变量 AUTHORIZATION_KEY 未设置,请设置后重试。") | |
return False | |
auth_header = request.headers.get('Authorization') | |
if not auth_header: | |
logging.warning("请求头中缺少 Authorization 字段。") | |
return False | |
if auth_header != f"Bearer {authorization_key}": | |
logging.warning(f"无效的 Authorization 密钥:{auth_header}") | |
return False | |
return True | |
scheduler = BackgroundScheduler() | |
scheduler.add_job(load_keys, 'interval', hours=1) | |
scheduler.remove_all_jobs() | |
scheduler.add_job(refresh_models, 'interval', hours=1) | |
def index(): | |
current_time = time.time() | |
one_minute_ago = current_time - 60 | |
with data_lock: | |
while request_timestamps and request_timestamps[0] < one_minute_ago: | |
request_timestamps.pop(0) | |
token_counts.pop(0) | |
rpm = len(request_timestamps) | |
tpm = sum(token_counts) | |
return jsonify({"rpm": rpm, "tpm": tpm}) | |
def check_tokens(): | |
tokens = request.json.get('tokens', []) | |
test_model = os.environ.get( | |
"TEST_MODEL", | |
"Pro/google/gemma-2-9b-it" | |
) | |
with concurrent.futures.ThreadPoolExecutor( | |
max_workers=1000 | |
) as executor: | |
future_to_token = { | |
executor.submit( | |
process_key, token, test_model | |
): token for token in tokens | |
} | |
results = [] | |
for future in concurrent.futures.as_completed(future_to_token): | |
token = future_to_token[future] | |
try: | |
key_type = future.result() | |
credit_summary = get_credit_summary(token) | |
balance = ( | |
credit_summary.get("total_balance", 0) | |
if credit_summary else 0 | |
) | |
if key_type == "invalid": | |
results.append( | |
{ | |
"token": token, | |
"type": "无效 KEY", | |
"balance": balance, | |
"message": "无法获取额度信息" | |
} | |
) | |
elif key_type == "free": | |
results.append( | |
{ | |
"token": token, | |
"type": "免费 KEY", | |
"balance": balance, | |
"message": "额度不足" | |
} | |
) | |
elif key_type == "unverified": | |
results.append( | |
{ | |
"token": token, | |
"type": "未实名 KEY", | |
"balance": balance, | |
"message": "无法使用指定模型" | |
} | |
) | |
elif key_type == "valid": | |
results.append( | |
{ | |
"token": token, | |
"type": "有效 KEY", | |
"balance": balance, | |
"message": "可以使用指定模型" | |
} | |
) | |
except Exception as exc: | |
logging.error( | |
f"处理 Token {token} 生成异常: {exc}" | |
) | |
return jsonify(results) | |
def list_models(): | |
if not check_authorization(request): | |
return jsonify({"error": "Unauthorized"}), 401 | |
detailed_models = [] | |
for model in text_models: | |
detailed_models.append({ | |
"id": model, | |
"object": "model", | |
"created": 1678888888, | |
"owned_by": "openai", | |
"permission": [ | |
{ | |
"id": f"modelperm-{uuid.uuid4().hex}", | |
"object": "model_permission", | |
"created": 1678888888, | |
"allow_create_engine": False, | |
"allow_sampling": True, | |
"allow_logprobs": True, | |
"allow_search_indices": False, | |
"allow_view": True, | |
"allow_fine_tuning": False, | |
"organization": "*", | |
"group": None, | |
"is_blocking": False | |
} | |
], | |
"root": model, | |
"parent": None | |
}) | |
for model in embedding_models: | |
detailed_models.append({ | |
"id": model, | |
"object": "model", | |
"created": 1678888888, | |
"owned_by": "openai", | |
"permission": [ | |
{ | |
"id": f"modelperm-{uuid.uuid4().hex}", | |
"object": "model_permission", | |
"created": 1678888888, | |
"allow_create_engine": False, | |
"allow_sampling": True, | |
"allow_logprobs": True, | |
"allow_search_indices": False, | |
"allow_view": True, | |
"allow_fine_tuning": False, | |
"organization": "*", | |
"group": None, | |
"is_blocking": False | |
} | |
], | |
"root": model, | |
"parent": None | |
}) | |
for model in image_models: | |
detailed_models.append({ | |
"id": model, | |
"object": "model", | |
"created": 1678888888, | |
"owned_by": "openai", | |
"permission": [ | |
{ | |
"id": f"modelperm-{uuid.uuid4().hex}", | |
"object": "model_permission", | |
"created": 1678888888, | |
"allow_create_engine": False, | |
"allow_sampling": True, | |
"allow_logprobs": True, | |
"allow_search_indices": False, | |
"allow_view": True, | |
"allow_fine_tuning": False, | |
"organization": "*", | |
"group": None, | |
"is_blocking": False | |
} | |
], | |
"root": model, | |
"parent": None | |
}) | |
return jsonify({ | |
"success": True, | |
"data": detailed_models | |
}) | |
def get_billing_info(): | |
keys = valid_keys_global + unverified_keys_global | |
total_balance = 0 | |
with concurrent.futures.ThreadPoolExecutor( | |
max_workers=10000 | |
) as executor: | |
futures = [ | |
executor.submit(get_credit_summary, key) for key in keys | |
] | |
for future in concurrent.futures.as_completed(futures): | |
try: | |
credit_summary = future.result() | |
if credit_summary: | |
total_balance += credit_summary.get( | |
"total_balance", | |
0 | |
) | |
except Exception as exc: | |
logging.error(f"获取额度信息生成异常: {exc}") | |
return total_balance | |
def billing_usage(): | |
if not check_authorization(request): | |
return jsonify({"error": "Unauthorized"}), 401 | |
end_date = datetime.now() | |
start_date = end_date - timedelta(days=30) | |
daily_usage = [] | |
current_date = start_date | |
while current_date <= end_date: | |
daily_usage.append({ | |
"timestamp": int(current_date.timestamp()), | |
"daily_usage": 0 | |
}) | |
current_date += timedelta(days=1) | |
return jsonify({ | |
"object": "list", | |
"data": daily_usage, | |
"total_usage": 0 | |
}) | |
def billing_subscription(): | |
if not check_authorization(request): | |
return jsonify({"error": "Unauthorized"}), 401 | |
total_balance = get_billing_info() | |
return jsonify({ | |
"object": "billing_subscription", | |
"has_payment_method": False, | |
"canceled": False, | |
"canceled_at": None, | |
"delinquent": None, | |
"access_until": int(datetime(9999, 12, 31).timestamp()), | |
"soft_limit": 0, | |
"hard_limit": total_balance, | |
"system_hard_limit": total_balance, | |
"soft_limit_usd": 0, | |
"hard_limit_usd": total_balance, | |
"system_hard_limit_usd": total_balance, | |
"plan": { | |
"name": "SiliconFlow API", | |
"id": "siliconflow-api" | |
}, | |
"account_name": "SiliconFlow User", | |
"po_number": None, | |
"billing_email": None, | |
"tax_ids": [], | |
"billing_address": None, | |
"business_address": None | |
}) | |
def handsome_embeddings(): | |
if not check_authorization(request): | |
return jsonify({"error": "Unauthorized"}), 401 | |
data = request.get_json() | |
if not data or 'model' not in data: | |
return jsonify({"error": "Invalid request data"}), 400 | |
model_name = data['model'] | |
request_type = determine_request_type( | |
model_name, | |
embedding_models, | |
free_embedding_models | |
) | |
api_key = select_key(request_type, model_name) | |
if not api_key: | |
return jsonify( | |
{ | |
"error": ( | |
"No available API key for this " | |
"request type or all keys have " | |
"reached their limits" | |
) | |
} | |
), 429 | |
headers = { | |
"Authorization": f"Bearer {api_key}", | |
"Content-Type": "application/json" | |
} | |
try: | |
start_time = time.time() | |
response = requests.post( | |
EMBEDDINGS_ENDPOINT, | |
headers=headers, | |
json=data, | |
timeout=120 | |
) | |
if response.status_code == 429: | |
return jsonify(response.json()), 429 | |
response.raise_for_status() | |
end_time = time.time() | |
response_json = response.json() | |
total_time = end_time - start_time | |
try: | |
prompt_tokens = response_json["usage"]["prompt_tokens"] | |
embedding_data = response_json["data"] | |
except (KeyError, ValueError, IndexError) as e: | |
logging.error( | |
f"解析响应 JSON 失败: {e}, " | |
f"完整内容: {response_json}" | |
) | |
prompt_tokens = 0 | |
embedding_data = [] | |
logging.info( | |
f"使用的key: {api_key}, " | |
f"提示token: {prompt_tokens}, " | |
f"总共用时: {total_time:.4f}秒, " | |
f"使用的模型: {model_name}" | |
) | |
with data_lock: | |
request_timestamps.append(time.time()) | |
token_counts.append(prompt_tokens) | |
return jsonify({ | |
"object": "list", | |
"data": embedding_data, | |
"model": model_name, | |
"usage": { | |
"prompt_tokens": prompt_tokens, | |
"total_tokens": prompt_tokens | |
} | |
}) | |
except requests.exceptions.RequestException as e: | |
return jsonify({"error": str(e)}), 500 | |
def handsome_images_generations(): | |
if not check_authorization(request): | |
return jsonify({"error": "Unauthorized"}), 401 | |
data = request.get_json() | |
if not data or 'model' not in data: | |
return jsonify({"error": "Invalid request data"}), 400 | |
model_name = data.get('model') | |
request_type = determine_request_type( | |
model_name, | |
image_models, | |
free_image_models | |
) | |
api_key = select_key(request_type, model_name) | |
if not api_key: | |
return jsonify( | |
{ | |
"error": ( | |
"No available API key for this " | |
"request type or all keys have " | |
"reached their limits" | |
) | |
} | |
), 429 | |
headers = { | |
"Authorization": f"Bearer {api_key}", | |
"Content-Type": "application/json" | |
} | |
response_data = {} | |
if "stable-diffusion" in model_name or model_name in ["black-forest-labs/FLUX.1-schnell", "Pro/black-forest-labs/FLUX.1-schnell","black-forest-labs/FLUX.1-dev", "black-forest-labs/FLUX.1-pro"]: | |
siliconflow_data = { | |
"model": model_name, | |
"prompt": data.get("prompt"), | |
} | |
if model_name == "black-forest-labs/FLUX.1-pro": | |
siliconflow_data["width"] = data.get("width", 1024) | |
siliconflow_data["height"] = data.get("height", 768) | |
siliconflow_data["prompt_upsampling"] = data.get("prompt_upsampling", False) | |
siliconflow_data["image_prompt"] = data.get("image_prompt") | |
siliconflow_data["steps"] = data.get("steps", 20) | |
siliconflow_data["guidance"] = data.get("guidance", 3) | |
siliconflow_data["safety_tolerance"] = data.get("safety_tolerance", 2) | |
siliconflow_data["interval"] = data.get("interval", 2) | |
siliconflow_data["output_format"] = data.get("output_format", "png") | |
seed = data.get("seed") | |
if isinstance(seed, int) and 0 < seed < 9999999999: | |
siliconflow_data["seed"] = seed | |
if siliconflow_data["width"] < 256 or siliconflow_data["width"] > 1440 or siliconflow_data["width"] % 32 != 0: | |
siliconflow_data["width"] = 1024 | |
if siliconflow_data["height"] < 256 or siliconflow_data["height"] > 1440 or siliconflow_data["height"] % 32 != 0: | |
siliconflow_data["height"] = 768 | |
if siliconflow_data["steps"] < 1 or siliconflow_data["steps"] > 50: | |
siliconflow_data["steps"] = 20 | |
if siliconflow_data["guidance"] < 1.5 or siliconflow_data["guidance"] > 5: | |
siliconflow_data["guidance"] = 3 | |
if siliconflow_data["safety_tolerance"] < 0 or siliconflow_data["safety_tolerance"] > 6: | |
siliconflow_data["safety_tolerance"] = 2 | |
if siliconflow_data["interval"] < 1 or siliconflow_data["interval"] > 4 : | |
siliconflow_data["interval"] = 2 | |
else: | |
siliconflow_data["image_size"] = data.get("image_size", "1024x1024") | |
siliconflow_data["prompt_enhancement"] = data.get("prompt_enhancement", False) | |
seed = data.get("seed") | |
if isinstance(seed, int) and 0 < seed < 9999999999: | |
siliconflow_data["seed"] = seed | |
if model_name not in ["black-forest-labs/FLUX.1-schnell", "Pro/black-forest-labs/FLUX.1-schnell"]: | |
siliconflow_data["batch_size"] = data.get("n", 1) | |
siliconflow_data["num_inference_steps"] = data.get("steps", 20) | |
siliconflow_data["guidance_scale"] = data.get("guidance_scale", 7.5) | |
siliconflow_data["negative_prompt"] = data.get("negative_prompt") | |
if siliconflow_data["batch_size"] < 1: | |
siliconflow_data["batch_size"] = 1 | |
if siliconflow_data["batch_size"] > 4: | |
siliconflow_data["batch_size"] = 4 | |
if siliconflow_data["num_inference_steps"] < 1: | |
siliconflow_data["num_inference_steps"] = 1 | |
if siliconflow_data["num_inference_steps"] > 50: | |
siliconflow_data["num_inference_steps"] = 50 | |
if siliconflow_data["guidance_scale"] < 0: | |
siliconflow_data["guidance_scale"] = 0 | |
if siliconflow_data["guidance_scale"] > 100: | |
siliconflow_data["guidance_scale"] = 100 | |
if "image_size" in siliconflow_data and siliconflow_data["image_size"] not in ["1024x1024", "512x1024", "768x512", "768x1024", "1024x576", "576x1024","960x1280", "720x1440", "720x1280"]: | |
siliconflow_data["image_size"] = "1024x1024" | |
try: | |
start_time = time.time() | |
response = requests.post( | |
"https://api-st.siliconflow.cn/v1/images/generations", | |
headers=headers, | |
json=siliconflow_data, | |
timeout=120 | |
) | |
if response.status_code == 429: | |
return jsonify(response.json()), 429 | |
response.raise_for_status() | |
end_time = time.time() | |
response_json = response.json() | |
total_time = end_time - start_time | |
try: | |
images = response_json.get("images", []) | |
openai_images = [] | |
for item in images: | |
if isinstance(item, dict) and "url" in item: | |
image_url = item["url"] | |
print(f"image_url: {image_url}") | |
if data.get("response_format") == "b64_json": | |
try: | |
image_data = requests.get(image_url, stream=True).raw | |
image = Image.open(image_data) | |
buffered = io.BytesIO() | |
image.save(buffered, format="PNG") | |
img_str = base64.b64encode(buffered.getvalue()).decode() | |
openai_images.append({"b64_json": img_str}) | |
except Exception as e: | |
logging.error(f"图片转base64失败: {e}") | |
openai_images.append({"url": image_url}) | |
else: | |
openai_images.append({"url": image_url}) | |
else: | |
logging.error(f"无效的图片数据: {item}") | |
openai_images.append({"url": item}) | |
response_data = { | |
"created": int(time.time()), | |
"data": openai_images | |
} | |
except (KeyError, ValueError, IndexError) as e: | |
logging.error( | |
f"解析响应 JSON 失败: {e}, " | |
f"完整内容: {response_json}" | |
) | |
response_data = { | |
"created": int(time.time()), | |
"data": [] | |
} | |
logging.info( | |
f"使用的key: {api_key}, " | |
f"总共用时: {total_time:.4f}秒, " | |
f"使用的模型: {model_name}" | |
) | |
with data_lock: | |
request_timestamps.append(time.time()) | |
token_counts.append(0) | |
return jsonify(response_data) | |
except requests.exceptions.RequestException as e: | |
logging.error(f"请求转发异常: {e}") | |
return jsonify({"error": str(e)}), 500 | |
else: | |
return jsonify({"error": "Unsupported model"}), 400 | |
def handsome_chat_completions(): | |
if not check_authorization(request): | |
return jsonify({"error": "Unauthorized"}), 401 | |
data = request.get_json() | |
if not data or 'model' not in data: | |
return jsonify({"error": "Invalid request data"}), 400 | |
model_name = data['model'] | |
request_type = determine_request_type( | |
model_name, | |
text_models + image_models, | |
free_text_models + free_image_models | |
) | |
api_key = select_key(request_type, model_name) | |
if not api_key: | |
return jsonify( | |
{ | |
"error": ( | |
"No available API key for this " | |
"request type or all keys have " | |
"reached their limits" | |
) | |
} | |
), 429 | |
headers = { | |
"Authorization": f"Bearer {api_key}", | |
"Content-Type": "application/json" | |
} | |
if model_name in image_models: | |
user_content = "" | |
messages = data.get("messages", []) | |
for message in messages: | |
if message["role"] == "user": | |
if isinstance(message["content"], str): | |
user_content += message["content"] + " " | |
elif isinstance(message["content"], list): | |
for item in message["content"]: | |
if ( | |
isinstance(item, dict) and | |
item.get("type") == "text" | |
): | |
user_content += ( | |
item.get("text", "") + | |
" " | |
) | |
user_content = user_content.strip() | |
siliconflow_data = { | |
"model": model_name, | |
"prompt": user_content, | |
} | |
if model_name == "black-forest-labs/FLUX.1-pro": | |
siliconflow_data["width"] = data.get("width", 1024) | |
siliconflow_data["height"] = data.get("height", 768) | |
siliconflow_data["prompt_upsampling"] = data.get("prompt_upsampling", False) | |
siliconflow_data["image_prompt"] = data.get("image_prompt") | |
siliconflow_data["steps"] = data.get("steps", 20) | |
siliconflow_data["guidance"] = data.get("guidance", 3) | |
siliconflow_data["safety_tolerance"] = data.get("safety_tolerance", 2) | |
siliconflow_data["interval"] = data.get("interval", 2) | |
siliconflow_data["output_format"] = data.get("output_format", "png") | |
seed = data.get("seed") | |
if isinstance(seed, int) and 0 < seed < 9999999999: | |
siliconflow_data["seed"] = seed | |
if siliconflow_data["width"] < 256 or siliconflow_data["width"] > 1440 or siliconflow_data["width"] % 32 != 0: | |
siliconflow_data["width"] = 1024 | |
if siliconflow_data["height"] < 256 or siliconflow_data["height"] > 1440 or siliconflow_data["height"] % 32 != 0: | |
siliconflow_data["height"] = 768 | |
if siliconflow_data["steps"] < 1 or siliconflow_data["steps"] > 50: | |
siliconflow_data["steps"] = 20 | |
if siliconflow_data["guidance"] < 1.5 or siliconflow_data["guidance"] > 5: | |
siliconflow_data["guidance"] = 3 | |
if siliconflow_data["safety_tolerance"] < 0 or siliconflow_data["safety_tolerance"] > 6: | |
siliconflow_data["safety_tolerance"] = 2 | |
if siliconflow_data["interval"] < 1 or siliconflow_data["interval"] > 4 : | |
siliconflow_data["interval"] = 2 | |
else: | |
siliconflow_data["image_size"] = "1024x1024" | |
siliconflow_data["batch_size"] = 1 | |
siliconflow_data["num_inference_steps"] = 20 | |
siliconflow_data["guidance_scale"] = 7.5 | |
siliconflow_data["prompt_enhancement"] = False | |
if data.get("size"): | |
siliconflow_data["image_size"] = data.get("size") | |
if data.get("n"): | |
siliconflow_data["batch_size"] = data.get("n") | |
if data.get("steps"): | |
siliconflow_data["num_inference_steps"] = data.get("steps") | |
if data.get("guidance_scale"): | |
siliconflow_data["guidance_scale"] = data.get("guidance_scale") | |
if data.get("negative_prompt"): | |
siliconflow_data["negative_prompt"] = data.get("negative_prompt") | |
if data.get("seed"): | |
siliconflow_data["seed"] = data.get("seed") | |
if data.get("prompt_enhancement"): | |
siliconflow_data["prompt_enhancement"] = data.get("prompt_enhancement") | |
if siliconflow_data["batch_size"] < 1: | |
siliconflow_data["batch_size"] = 1 | |
if siliconflow_data["batch_size"] > 4: | |
siliconflow_data["batch_size"] = 4 | |
if siliconflow_data["num_inference_steps"] < 1: | |
siliconflow_data["num_inference_steps"] = 1 | |
if siliconflow_data["num_inference_steps"] > 50: | |
siliconflow_data["num_inference_steps"] = 50 | |
if siliconflow_data["guidance_scale"] < 0: | |
siliconflow_data["guidance_scale"] = 0 | |
if siliconflow_data["guidance_scale"] > 100: | |
siliconflow_data["guidance_scale"] = 100 | |
if siliconflow_data["image_size"] not in ["1024x1024", "512x1024", "768x512", "768x1024", "1024x576", "576x1024", "960x1280", "720x1440", "720x1280"]: | |
siliconflow_data["image_size"] = "1024x1024" | |
try: | |
start_time = time.time() | |
response = requests.post( | |
"https://api.siliconflow.cn/v1/images/generations", | |
headers=headers, | |
json=siliconflow_data, | |
timeout=120, | |
stream=data.get("stream", False) | |
) | |
if response.status_code == 429: | |
return jsonify(response.json()), 429 | |
if data.get("stream", False): | |
def generate(): | |
first_chunk_time = None | |
full_response_content = "" | |
try: | |
response.raise_for_status() | |
end_time = time.time() | |
response_json = response.json() | |
total_time = end_time - start_time | |
images = response_json.get("images", []) | |
image_url = "" | |
if images and isinstance(images[0], dict) and "url" in images[0]: | |
image_url = images[0]["url"] | |
logging.info(f"Extracted image URL: {image_url}") | |
elif images and isinstance(images[0], str): | |
image_url = images[0] | |
logging.info(f"Extracted image URL: {image_url}") | |
markdown_image_link = f"![image]({image_url})" | |
if image_url: | |
chunk_data = { | |
"id": f"chatcmpl-{uuid.uuid4()}", | |
"object": "chat.completion.chunk", | |
"created": int(time.time()), | |
"model": model_name, | |
"choices": [ | |
{ | |
"index": 0, | |
"delta": { | |
"role": "assistant", | |
"content": markdown_image_link | |
}, | |
"finish_reason": None | |
} | |
] | |
} | |
yield f"data: {json.dumps(chunk_data)}\n\n".encode('utf-8') | |
full_response_content = markdown_image_link | |
else: | |
chunk_data = { | |
"id": f"chatcmpl-{uuid.uuid4()}", | |
"object": "chat.completion.chunk", | |
"created": int(time.time()), | |
"model": model_name, | |
"choices": [ | |
{ | |
"index": 0, | |
"delta": { | |
"role": "assistant", | |
"content": "Failed to generate image" | |
}, | |
"finish_reason": None | |
} | |
] | |
} | |
yield f"data: {json.dumps(chunk_data)}\n\n".encode('utf-8') | |
full_response_content = "Failed to generate image" | |
end_chunk_data = { | |
"id": f"chatcmpl-{uuid.uuid4()}", | |
"object": "chat.completion.chunk", | |
"created": int(time.time()), | |
"model": model_name, | |
"choices": [ | |
{ | |
"index": 0, | |
"delta": {}, | |
"finish_reason": "stop" | |
} | |
] | |
} | |
yield f"data: {json.dumps(end_chunk_data)}\n\n".encode('utf-8') | |
with data_lock: | |
request_timestamps.append(time.time()) | |
token_counts.append(0) | |
except requests.exceptions.RequestException as e: | |
logging.error(f"请求转发异常: {e}") | |
error_chunk_data = { | |
"id": f"chatcmpl-{uuid.uuid4()}", | |
"object": "chat.completion.chunk", | |
"created": int(time.time()), | |
"model": model_name, | |
"choices": [ | |
{ | |
"index": 0, | |
"delta": { | |
"role": "assistant", | |
"content": f"Error: {str(e)}" | |
}, | |
"finish_reason": None | |
} | |
] | |
} | |
yield f"data: {json.dumps(error_chunk_data)}\n\n".encode('utf-8') | |
end_chunk_data = { | |
"id": f"chatcmpl-{uuid.uuid4()}", | |
"object": "chat.completion.chunk", | |
"created": int(time.time()), | |
"model": model_name, | |
"choices": [ | |
{ | |
"index": 0, | |
"delta": {}, | |
"finish_reason": "stop" | |
} | |
] | |
} | |
yield f"data: {json.dumps(end_chunk_data)}\n\n".encode('utf-8') | |
logging.info( | |
f"使用的key: {api_key}, " | |
f"使用的模型: {model_name}" | |
) | |
yield "data: [DONE]\n\n".encode('utf-8') | |
return Response(stream_with_context(generate()), content_type='text/event-stream') | |
else: | |
response.raise_for_status() | |
end_time = time.time() | |
response_json = response.json() | |
total_time = end_time - start_time | |
try: | |
images = response_json.get("images", []) | |
image_url = "" | |
if images and isinstance(images[0], dict) and "url" in images[0]: | |
image_url = images[0]["url"] | |
logging.info(f"Extracted image URL: {image_url}") | |
elif images and isinstance(images[0], str): | |
image_url = images[0] | |
logging.info(f"Extracted image URL: {image_url}") | |
markdown_image_link = f"![image]({image_url})" | |
response_data = { | |
"id": f"chatcmpl-{uuid.uuid4()}", | |
"object": "chat.completion", | |
"created": int(time.time()), | |
"model": model_name, | |
"choices": [ | |
{ | |
"index": 0, | |
"message": { | |
"role": "assistant", | |
"content": markdown_image_link if image_url else "Failed to generate image", | |
}, | |
"finish_reason": "stop", | |
} | |
], | |
} | |
except (KeyError, ValueError, IndexError) as e: | |
logging.error( | |
f"解析响应 JSON 失败: {e}, " | |
f"完整内容: {response_json}" | |
) | |
response_data = { | |
"id": f"chatcmpl-{uuid.uuid4()}", | |
"object": "chat.completion", | |
"created": int(time.time()), | |
"model": model_name, | |
"choices": [ | |
{ | |
"index": 0, | |
"message": { | |
"role": "assistant", | |
"content": "Failed to process image data", | |
}, | |
"finish_reason": "stop", | |
} | |
], | |
} | |
logging.info( | |
f"使用的key: {api_key}, " | |
f"总共用时: {total_time:.4f}秒, " | |
f"使用的模型: {model_name}" | |
) | |
with data_lock: | |
request_timestamps.append(time.time()) | |
token_counts.append(0) | |
return jsonify(response_data) | |
except requests.exceptions.RequestException as e: | |
logging.error(f"请求转发异常: {e}") | |
return jsonify({"error": str(e)}), 500 | |
else: | |
try: | |
start_time = time.time() | |
response = requests.post( | |
TEST_MODEL_ENDPOINT, | |
headers=headers, | |
json=data, | |
stream=data.get("stream", False), | |
timeout=60 | |
) | |
if response.status_code == 429: | |
return jsonify(response.json()), 429 | |
if data.get("stream", False): | |
def generate(): | |
first_chunk_time = None | |
full_response_content = "" | |
for chunk in response.iter_content(chunk_size=1024): | |
if chunk: | |
if first_chunk_time is None: | |
first_chunk_time = time.time() | |
full_response_content += chunk.decode("utf-8") | |
yield chunk | |
end_time = time.time() | |
first_token_time = ( | |
first_chunk_time - start_time | |
if first_chunk_time else 0 | |
) | |
total_time = end_time - start_time | |
prompt_tokens = 0 | |
completion_tokens = 0 | |
response_content = "" | |
for line in full_response_content.splitlines(): | |
if line.startswith("data:"): | |
line = line[5:].strip() | |
if line == "[DONE]": | |
continue | |
try: | |
response_json = json.loads(line) | |
if ( | |
"usage" in response_json and | |
"completion_tokens" in response_json["usage"] | |
): | |
completion_tokens = response_json[ | |
"usage" | |
]["completion_tokens"] | |
if ( | |
"choices" in response_json and | |
len(response_json["choices"]) > 0 and | |
"delta" in response_json["choices"][0] and | |
"content" in response_json[ | |
"choices" | |
][0]["delta"] | |
): | |
response_content += response_json[ | |
"choices" | |
][0]["delta"]["content"] | |
if ( | |
"usage" in response_json and | |
"prompt_tokens" in response_json["usage"] | |
): | |
prompt_tokens = response_json[ | |
"usage" | |
]["prompt_tokens"] | |
except ( | |
KeyError, | |
ValueError, | |
IndexError | |
) as e: | |
logging.error( | |
f"解析流式响应单行 JSON 失败: {e}, " | |
f"行内容: {line}" | |
) | |
user_content = "" | |
messages = data.get("messages", []) | |
for message in messages: | |
if message["role"] == "user": | |
if isinstance(message["content"], str): | |
user_content += message["content"] + " " | |
elif isinstance(message["content"], list): | |
for item in message["content"]: | |
if ( | |
isinstance(item, dict) and | |
item.get("type") == "text" | |
): | |
user_content += ( | |
item.get("text", "") + | |
" " | |
) | |
user_content = user_content.strip() | |
user_content_replaced = user_content.replace( | |
'\n', '\\n' | |
).replace('\r', '\\n') | |
response_content_replaced = response_content.replace( | |
'\n', '\\n' | |
).replace('\r', '\\n') | |
logging.info( | |
f"使用的key: {api_key}, " | |
f"提示token: {prompt_tokens}, " | |
f"输出token: {completion_tokens}, " | |
f"首字用时: {first_token_time:.4f}秒, " | |
f"总共用时: {total_time:.4f}秒, " | |
f"使用的模型: {model_name}, " | |
f"用户的内容: {user_content_replaced}, " | |
f"输出的内容: {response_content_replaced}" | |
) | |
with data_lock: | |
request_timestamps.append(time.time()) | |
token_counts.append(prompt_tokens+completion_tokens) | |
return Response( | |
stream_with_context(generate()), | |
content_type=response.headers['Content-Type'] | |
) | |
else: | |
response.raise_for_status() | |
end_time = time.time() | |
response_json = response.json() | |
total_time = end_time - start_time | |
try: | |
prompt_tokens = response_json["usage"]["prompt_tokens"] | |
completion_tokens = response_json[ | |
"usage" | |
]["completion_tokens"] | |
response_content = response_json[ | |
"choices" | |
][0]["message"]["content"] | |
except (KeyError, ValueError, IndexError) as e: | |
logging.error( | |
f"解析非流式响应 JSON 失败: {e}, " | |
f"完整内容: {response_json}" | |
) | |
prompt_tokens = 0 | |
completion_tokens = 0 | |
response_content = "" | |
user_content = "" | |
messages = data.get("messages", []) | |
for message in messages: | |
if message["role"] == "user": | |
if isinstance(message["content"], str): | |
user_content += message["content"] + " " | |
elif isinstance(message["content"], list): | |
for item in message["content"]: | |
if ( | |
isinstance(item, dict) and | |
item.get("type") == "text" | |
): | |
user_content += ( | |
item.get("text", "") + " " | |
) | |
user_content = user_content.strip() | |
user_content_replaced = user_content.replace( | |
'\n', '\\n' | |
).replace('\r', '\\n') | |
response_content_replaced = response_content.replace( | |
'\n', '\\n' | |
).replace('\r', '\\n') | |
logging.info( | |
f"使用的key: {api_key}, " | |
f"提示token: {prompt_tokens}, " | |
f"输出token: {completion_tokens}, " | |
f"首字用时: 0, " | |
f"总共用时: {total_time:.4f}秒, " | |
f"使用的模型: {model_name}, " | |
f"用户的内容: {user_content_replaced}, " | |
f"输出的内容: {response_content_replaced}" | |
) | |
with data_lock: | |
request_timestamps.append(time.time()) | |
if "prompt_tokens" in response_json["usage"] and "completion_tokens" in response_json["usage"]: | |
token_counts.append(response_json["usage"]["prompt_tokens"] + response_json["usage"]["completion_tokens"]) | |
else: | |
token_counts.append(0) | |
return jsonify(response_json) | |
except requests.exceptions.RequestException as e: | |
logging.error(f"请求转发异常: {e}") | |
return jsonify({"error": str(e)}), 500 | |
if __name__ == '__main__': | |
import json | |
logging.info(f"环境变量:{os.environ}") | |
invalid_keys_global = [] | |
free_keys_global = [] | |
unverified_keys_global = [] | |
valid_keys_global = [] | |
load_keys() | |
logging.info("程序启动时首次加载 keys 已执行") | |
scheduler.start() | |
logging.info("首次加载 keys 已手动触发执行") | |
refresh_models() | |
logging.info("首次刷新模型列表已手动触发执行") | |
app.run( | |
debug=False, | |
host='0.0.0.0', | |
port=int(os.environ.get('PORT', 7860)) | |
) |