Spaces:
Sleeping
Sleeping
Update song-insight-app.py
Browse files- song-insight-app.py +32 -29
song-insight-app.py
CHANGED
@@ -6,6 +6,7 @@ from langchain.chains import LLMChain
|
|
6 |
from langchain_community.retrievers import WikipediaRetriever
|
7 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
8 |
from langchain_google_genai import ChatGoogleGenerativeAI
|
|
|
9 |
import os
|
10 |
|
11 |
|
@@ -18,12 +19,15 @@ def song_insight(song, artist):
|
|
18 |
docs = retriever.get_relevant_documents(query=query_input)
|
19 |
|
20 |
# LLM model
|
21 |
-
# llm = ChatOpenAI(openai_api_key=
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
27 |
|
28 |
# get the song meaning
|
29 |
template_song_meaning = """
|
@@ -31,43 +35,42 @@ def song_insight(song, artist):
|
|
31 |
|
32 |
{content}
|
33 |
|
34 |
-
based on the the content above what does the song {song} by {artist} tell us about? give me a long explanations
|
|
|
35 |
|
36 |
"""
|
37 |
-
prompt_template_song_meaning = PromptTemplate(input_variables=["artist", "song", "content"],
|
38 |
-
template=template_song_meaning)
|
39 |
chain_song_meaning = LLMChain(llm=llm, prompt=prompt_template_song_meaning)
|
40 |
-
results_song_meaning = chain_song_meaning.run(artist=artist.title(), song=song.title(),
|
41 |
-
content=docs[0].page_content)
|
42 |
|
43 |
-
# get
|
44 |
-
|
45 |
-
|
46 |
|
47 |
-
{
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
-
based on the the content above what themes does the lyrics have?
|
50 |
|
51 |
"""
|
52 |
-
prompt_template_song_theme = PromptTemplate(input_variables=["artist", "song", "content"],
|
53 |
-
template=template_song_theme)
|
54 |
-
chain_song_theme = LLMChain(llm=llm, prompt=prompt_template_song_theme)
|
55 |
-
text_song_theme = chain_song_theme.run(artist=artist.title(), song=song.title(), content=docs[0].page_content)
|
56 |
-
inputs_song_theme = tokenizer(text_song_theme, return_tensors="pt")
|
57 |
-
output_song_theme_proba = emotion_model(**inputs_song_theme).logits.softmax(1)
|
58 |
-
labels = emotion_model.config.id2label
|
59 |
-
confidences = {labels[i]: output_song_theme_proba[0][i].item() for i in range(len(labels))}
|
60 |
|
61 |
-
|
|
|
|
|
62 |
|
|
|
63 |
|
64 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
65 |
song = gr.Textbox(label="Song")
|
66 |
artist = gr.Textbox(label="Artist")
|
67 |
output_song_meaning = gr.Textbox(label="Meaning")
|
68 |
-
|
69 |
-
gr.Interface(fn=song_insight, inputs=[song, artist], outputs=[output_song_meaning,
|
70 |
-
example = gr.Examples([['
|
71 |
-
[
|
72 |
|
73 |
demo.launch()
|
|
|
6 |
from langchain_community.retrievers import WikipediaRetriever
|
7 |
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
8 |
from langchain_google_genai import ChatGoogleGenerativeAI
|
9 |
+
from google.generativeai.types.safety_types import HarmBlockThreshold, HarmCategory
|
10 |
import os
|
11 |
|
12 |
|
|
|
19 |
docs = retriever.get_relevant_documents(query=query_input)
|
20 |
|
21 |
# LLM model
|
22 |
+
# llm = ChatOpenAI(openai_api_key=OPENAI_API_KEY, model_name="gpt-3.5-turbo", temperature=0)
|
23 |
+
safety_setting = {
|
24 |
+
HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: HarmBlockThreshold.BLOCK_NONE,
|
25 |
+
HarmCategory.HARM_CATEGORY_HATE_SPEECH: HarmBlockThreshold.BLOCK_NONE,
|
26 |
+
HarmCategory.HARM_CATEGORY_HARASSMENT: HarmBlockThreshold.BLOCK_NONE,
|
27 |
+
HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT: HarmBlockThreshold.BLOCK_NONE,
|
28 |
+
}
|
29 |
+
llm = ChatGoogleGenerativeAI(model="gemini-pro", google_api_key=GOOGLE_API_KEY, temperature=0,
|
30 |
+
safety_settings=safety_setting, top_p=0)
|
31 |
|
32 |
# get the song meaning
|
33 |
template_song_meaning = """
|
|
|
35 |
|
36 |
{content}
|
37 |
|
38 |
+
based on the the content above what does the song {song} by {artist} tell us about? give me a long explanations and
|
39 |
+
do not bold any text.
|
40 |
|
41 |
"""
|
42 |
+
prompt_template_song_meaning = PromptTemplate(input_variables=["artist", "song", "content"], template=template_song_meaning)
|
|
|
43 |
chain_song_meaning = LLMChain(llm=llm, prompt=prompt_template_song_meaning)
|
44 |
+
results_song_meaning = chain_song_meaning.run(artist=artist.title(), song=song.title(), content=docs[0].page_content)
|
|
|
45 |
|
46 |
+
# get song recom
|
47 |
+
template_song_recom = """
|
48 |
+
here are the meaning of {song} by {artist}:
|
49 |
|
50 |
+
{song_meaning}
|
51 |
+
|
52 |
+
can you give me a 3 songs recommendation similar to the meaning of the song above?
|
53 |
+
use this format for the output and do not bold any text:
|
54 |
+
1. recommended song 1, with a brief explanation.
|
55 |
+
2. recommended song 2, with a brief explanation.
|
56 |
+
3. recommended song 3, with a brief explanation.
|
57 |
|
|
|
58 |
|
59 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
+
prompt_template_song_recom = PromptTemplate(input_variables=["artist", "song", "song_meaning"], template=template_song_recom)
|
62 |
+
chain_song_recom = LLMChain(llm=llm, prompt=prompt_template_song_recom)
|
63 |
+
results_song_recom = chain_song_recom.run(artist=artist, song=song, song_meaning=results_song_meaning)
|
64 |
|
65 |
+
return results_song_meaning, results_song_recom
|
66 |
|
67 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
68 |
song = gr.Textbox(label="Song")
|
69 |
artist = gr.Textbox(label="Artist")
|
70 |
output_song_meaning = gr.Textbox(label="Meaning")
|
71 |
+
output_song_recom = gr.Textbox(label="Song Recommendation")
|
72 |
+
gr.Interface(fn=song_insight, inputs=[song, artist], outputs=[output_song_meaning, output_song_recom])
|
73 |
+
example = gr.Examples([["They Don't Care About Us", 'Michael Jackson'], ["Bad Romance", 'Lady Gaga'],
|
74 |
+
["Let It Be", "The Beatles"], ["Life Goes On", 'BTS'], ["Blank Space", "Taylor Swift"]], [song, artist])
|
75 |
|
76 |
demo.launch()
|