yangswei commited on
Commit
c73514d
1 Parent(s): 2819ad0

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +48 -0
app.py ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import ViTFeatureExtractor, ViTForImageClassification
3
+ from PIL import Image
4
+ import requests
5
+ ts_url = 'https://static.promediateknologi.id/crop/0x0:0x0/0x0/webp/photo/p2/01/2023/08/10/taylor-swift-3169402579.png'
6
+ ts_image = Image.open(requests.get(ts_url, stream=True).raw)
7
+ pg_url = "https://media.vogue.co.uk/photos/60f888a382e60565201c7cf4/2:3/w_2560%2Cc_limit/prince-Grorge-eigth-birthday-portrait.jpg"
8
+ pg_image = Image.open(requests.get(pg_url, stream=True).raw)
9
+ img_url = "https://thumbs.dreamstime.com/b/old-man-20313005.jpg"
10
+ img_image = Image.open(requests.get(img_url, stream=True).raw)
11
+
12
+ def age_emot_classifier(input_image):
13
+
14
+ # Init model, transforms
15
+ model_age = ViTForImageClassification.from_pretrained('nateraw/vit-age-classifier')
16
+ transforms_age = ViTFeatureExtractor.from_pretrained('nateraw/vit-age-classifier')
17
+
18
+ model_emot = ViTForImageClassification.from_pretrained("yangswei/visual-emotion-classification")
19
+ transforms_emot = ViTFeatureExtractor.from_pretrained("yangswei/visual-emotion-classification")
20
+
21
+ # Transform our image and pass it through the model
22
+ inputs_age = transforms_age(input_image, return_tensors='pt')
23
+ output_age = model_age(**inputs_age)
24
+
25
+ inputs_emot = transforms_emot(input_image, return_tensors='pt')
26
+ output_emot = model_emot(**inputs_emot)
27
+
28
+ # Predicted Class probabilities
29
+ proba_age = output_age.logits.softmax(1)
30
+ proba_emot = output_emot.logits.softmax(1)
31
+
32
+ # Predicted Classes With Confidences
33
+ labels_age = model_age.config.id2label
34
+ confidences_age = {labels_age[i]: proba_age[0][i].item() for i in range(len(labels_age))}
35
+
36
+ labels_emot = model_emot.config.id2label
37
+ confidences_emot = {labels_emot[i]: proba_emot[0][i].item() for i in range(len(labels_emot))}
38
+
39
+ return confidences_age, confidences_emot
40
+
41
+ output_age = gr.Label(num_top_classes=9, label="Age Prediction")
42
+ output_emotion = gr.Label(num_top_classes=8, label="Emotion Prediction")
43
+
44
+ with gr.Blocks(theme=gr.themes.Glass()) as demo:
45
+ gr.Interface(fn=age_emot_classifier, inputs="image", outputs=[output_age, output_emotion],
46
+ examples=[ts_image, pg_image, img_image])
47
+
48
+ demo.launch()