Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import ViTFeatureExtractor, ViTForImageClassification
|
3 |
+
from PIL import Image
|
4 |
+
import requests
|
5 |
+
ts_url = 'https://static.promediateknologi.id/crop/0x0:0x0/0x0/webp/photo/p2/01/2023/08/10/taylor-swift-3169402579.png'
|
6 |
+
ts_image = Image.open(requests.get(ts_url, stream=True).raw)
|
7 |
+
pg_url = "https://media.vogue.co.uk/photos/60f888a382e60565201c7cf4/2:3/w_2560%2Cc_limit/prince-Grorge-eigth-birthday-portrait.jpg"
|
8 |
+
pg_image = Image.open(requests.get(pg_url, stream=True).raw)
|
9 |
+
img_url = "https://thumbs.dreamstime.com/b/old-man-20313005.jpg"
|
10 |
+
img_image = Image.open(requests.get(img_url, stream=True).raw)
|
11 |
+
|
12 |
+
def age_emot_classifier(input_image):
|
13 |
+
|
14 |
+
# Init model, transforms
|
15 |
+
model_age = ViTForImageClassification.from_pretrained('nateraw/vit-age-classifier')
|
16 |
+
transforms_age = ViTFeatureExtractor.from_pretrained('nateraw/vit-age-classifier')
|
17 |
+
|
18 |
+
model_emot = ViTForImageClassification.from_pretrained("yangswei/visual-emotion-classification")
|
19 |
+
transforms_emot = ViTFeatureExtractor.from_pretrained("yangswei/visual-emotion-classification")
|
20 |
+
|
21 |
+
# Transform our image and pass it through the model
|
22 |
+
inputs_age = transforms_age(input_image, return_tensors='pt')
|
23 |
+
output_age = model_age(**inputs_age)
|
24 |
+
|
25 |
+
inputs_emot = transforms_emot(input_image, return_tensors='pt')
|
26 |
+
output_emot = model_emot(**inputs_emot)
|
27 |
+
|
28 |
+
# Predicted Class probabilities
|
29 |
+
proba_age = output_age.logits.softmax(1)
|
30 |
+
proba_emot = output_emot.logits.softmax(1)
|
31 |
+
|
32 |
+
# Predicted Classes With Confidences
|
33 |
+
labels_age = model_age.config.id2label
|
34 |
+
confidences_age = {labels_age[i]: proba_age[0][i].item() for i in range(len(labels_age))}
|
35 |
+
|
36 |
+
labels_emot = model_emot.config.id2label
|
37 |
+
confidences_emot = {labels_emot[i]: proba_emot[0][i].item() for i in range(len(labels_emot))}
|
38 |
+
|
39 |
+
return confidences_age, confidences_emot
|
40 |
+
|
41 |
+
output_age = gr.Label(num_top_classes=9, label="Age Prediction")
|
42 |
+
output_emotion = gr.Label(num_top_classes=8, label="Emotion Prediction")
|
43 |
+
|
44 |
+
with gr.Blocks(theme=gr.themes.Glass()) as demo:
|
45 |
+
gr.Interface(fn=age_emot_classifier, inputs="image", outputs=[output_age, output_emotion],
|
46 |
+
examples=[ts_image, pg_image, img_image])
|
47 |
+
|
48 |
+
demo.launch()
|