Spaces:
Build error
Build error
| import gradio as gr | |
| from transformers import ViTFeatureExtractor, ViTForImageClassification | |
| from PIL import Image | |
| import requests | |
| img1_url = 'https://static3.depositphotos.com/1003410/160/i/450/depositphotos_1607848-stock-photo-portrait-of-old-man.jpg' | |
| img1 = Image.open(requests.get(img1_url, stream=True).raw) | |
| img2_url = "https://img.freepik.com/free-photo/excited-screaming-young-woman-standing-isolated-yellow_176420-39645.jpg" | |
| img2 = Image.open(requests.get(img2_url, stream=True).raw) | |
| img3_url = "https://img.freepik.com/free-photo/cute-adorable-boy-studio_58702-7629.jpg" | |
| img3 = Image.open(requests.get(img3_url, stream=True).raw) | |
| def age_emot_classifier(input_image): | |
| # Init model, transforms | |
| model_age = ViTForImageClassification.from_pretrained('nateraw/vit-age-classifier') | |
| transforms_age = ViTFeatureExtractor.from_pretrained('nateraw/vit-age-classifier') | |
| model_emot = ViTForImageClassification.from_pretrained("yangswei/visual-emotion-classification") | |
| transforms_emot = ViTFeatureExtractor.from_pretrained("yangswei/visual-emotion-classification") | |
| # Transform our image and pass it through the model | |
| inputs_age = transforms_age(input_image, return_tensors='pt') | |
| output_age = model_age(**inputs_age) | |
| inputs_emot = transforms_emot(input_image, return_tensors='pt') | |
| output_emot = model_emot(**inputs_emot) | |
| # Predicted Class probabilities | |
| proba_age = output_age.logits.softmax(1) | |
| proba_emot = output_emot.logits.softmax(1) | |
| # Predicted Classes With Confidences | |
| labels_age = model_age.config.id2label | |
| confidences_age = {labels_age[i]: proba_age[0][i].item() for i in range(len(labels_age))} | |
| labels_emot = model_emot.config.id2label | |
| confidences_emot = {labels_emot[i]: proba_emot[0][i].item() for i in range(len(labels_emot))} | |
| return confidences_age, confidences_emot | |
| output_age = gr.Label(num_top_classes=9, label="Age Prediction") | |
| output_emotion = gr.Label(num_top_classes=8, label="Emotion Prediction") | |
| with gr.Blocks(theme=gr.themes.Glass()) as demo: | |
| gr.Interface(fn=age_emot_classifier, inputs="image", outputs=[output_age, output_emotion], | |
| examples=[img1, img2, img3]) | |
| demo.launch() |