yangheng's picture
init
9842c28
raw
history blame
11 kB
import os
import random
import autocuda
from pyabsa.utils.pyabsa_utils import fprint
from diffusers import (
AutoencoderKL,
UNet2DConditionModel,
StableDiffusionPipeline,
StableDiffusionImg2ImgPipeline,
DPMSolverMultistepScheduler,
)
import gradio as gr
import torch
from PIL import Image
import utils
import datetime
import time
import psutil
from Waifu2x.magnify import ImageMagnifier
start_time = time.time()
is_colab = utils.is_google_colab()
device = autocuda.auto_cuda()
magnifier = ImageMagnifier()
class Model:
def __init__(self, name, path="", prefix=""):
self.name = name
self.path = path
self.prefix = prefix
self.pipe_t2i = None
self.pipe_i2i = None
models = [
# Model("anything v3", "anything-v3.0", "anything v3 style"),
Model("anything v3", "Linaqruf/anything-v3.0", "anything v3 style"),
]
# Model("Spider-Verse", "nitrosocke/spider-verse-diffusion", "spiderverse style "),
# Model("Balloon Art", "Fictiverse/Stable_Diffusion_BalloonArt_Model", "BalloonArt "),
# Model("Elden Ring", "nitrosocke/elden-ring-diffusion", "elden ring style "),
# Model("Tron Legacy", "dallinmackay/Tron-Legacy-diffusion", "trnlgcy ")
# Model("Pokémon", "lambdalabs/sd-pokemon-diffusers", ""),
# Model("Pony Diffusion", "AstraliteHeart/pony-diffusion", ""),
# Model("Robo Diffusion", "nousr/robo-diffusion", ""),
scheduler = DPMSolverMultistepScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
num_train_timesteps=1000,
trained_betas=None,
predict_epsilon=True,
thresholding=False,
algorithm_type="dpmsolver++",
solver_type="midpoint",
lower_order_final=True,
)
custom_model = None
if is_colab:
models.insert(0, Model("Custom model"))
custom_model = models[0]
last_mode = "txt2img"
current_model = models[1] if is_colab else models[0]
current_model_path = current_model.path
if is_colab:
pipe = StableDiffusionPipeline.from_pretrained(
current_model.path,
torch_dtype=torch.float16,
scheduler=scheduler,
safety_checker=lambda images, clip_input: (images, False),
)
else: # download all models
print(f"{datetime.datetime.now()} Downloading vae...")
vae = AutoencoderKL.from_pretrained(
current_model.path, subfolder="vae", torch_dtype=torch.float16
)
for model in models:
try:
print(f"{datetime.datetime.now()} Downloading {model.name} model...")
unet = UNet2DConditionModel.from_pretrained(
model.path, subfolder="unet", torch_dtype=torch.float16
)
model.pipe_t2i = StableDiffusionPipeline.from_pretrained(
model.path,
unet=unet,
vae=vae,
torch_dtype=torch.float16,
scheduler=scheduler,
)
model.pipe_i2i = StableDiffusionImg2ImgPipeline.from_pretrained(
model.path,
unet=unet,
vae=vae,
torch_dtype=torch.float16,
scheduler=scheduler,
)
except Exception as e:
print(
f"{datetime.datetime.now()} Failed to load model "
+ model.name
+ ": "
+ str(e)
)
models.remove(model)
pipe = models[0].pipe_t2i
if torch.cuda.is_available():
pipe = pipe.to(device)
device = "GPU 🔥" if torch.cuda.is_available() else "CPU 🥶"
def error_str(error, title="Error"):
return (
f"""#### {title}
{error}"""
if error
else ""
)
def custom_model_changed(path):
models[0].path = path
global current_model
current_model = models[0]
def on_model_change(model_name):
prefix = (
'Enter prompt. "'
+ next((m.prefix for m in models if m.name == model_name), None)
+ '" is prefixed automatically'
if model_name != models[0].name
else "Don't forget to use the custom model prefix in the prompt!"
)
return gr.update(visible=model_name == models[0].name), gr.update(
placeholder=prefix
)
def inference(
model_name,
prompt,
guidance,
steps,
width=512,
height=512,
seed=0,
img=None,
strength=0.5,
neg_prompt="",
):
print(psutil.virtual_memory()) # print memory usage
global current_model
for model in models:
if model.name == model_name:
current_model = model
model_path = current_model.path
generator = torch.Generator("cuda").manual_seed(seed) if seed != 0 else None
try:
if img is not None:
return (
img_to_img(
model_path,
prompt,
neg_prompt,
img,
strength,
guidance,
steps,
width,
height,
generator,
),
None,
)
else:
return (
txt_to_img(
model_path,
prompt,
neg_prompt,
guidance,
steps,
width,
height,
generator,
),
None,
)
except Exception as e:
fprint(e)
return None, error_str(e)
def txt_to_img(
model_path, prompt, neg_prompt, guidance, steps, width, height, generator
):
print(f"{datetime.datetime.now()} txt_to_img, model: {current_model.name}")
global last_mode
global pipe
global current_model_path
if model_path != current_model_path or last_mode != "txt2img":
current_model_path = model_path
if is_colab or current_model == custom_model:
pipe = StableDiffusionPipeline.from_pretrained(
current_model_path,
torch_dtype=torch.float16,
scheduler=scheduler,
safety_checker=lambda images, clip_input: (images, False),
)
else:
pipe = pipe.to("cpu")
pipe = current_model.pipe_t2i
if torch.cuda.is_available():
pipe = pipe.to(device)
last_mode = "txt2img"
prompt = current_model.prefix + prompt
result = pipe(
prompt,
negative_prompt=neg_prompt,
# num_images_per_prompt=n_images,
num_inference_steps=int(steps),
guidance_scale=guidance,
width=width,
height=height,
generator=generator,
)
result.images[0] = magnifier.magnify(result.images[0])
result.images[0] = magnifier.magnify(result.images[0])
# save image
result.images[0].save(
"{}/{}.{}.{}.{}.{}.{}.{}.{}.png".format(
saved_path,
datetime.datetime.now().strftime("%Y%m%d-%H%M%S"),
model_name,
prompt,
guidance,
steps,
width,
height,
seed,
)
)
return replace_nsfw_images(result)
def img_to_img(
model_path,
prompt,
neg_prompt,
img,
strength,
guidance,
steps,
width,
height,
generator,
):
print(f"{datetime.datetime.now()} img_to_img, model: {model_path}")
global last_mode
global pipe
global current_model_path
if model_path != current_model_path or last_mode != "img2img":
current_model_path = model_path
if is_colab or current_model == custom_model:
pipe = StableDiffusionImg2ImgPipeline.from_pretrained(
current_model_path,
torch_dtype=torch.float16,
scheduler=scheduler,
safety_checker=lambda images, clip_input: (images, False),
)
else:
pipe = pipe.to("cpu")
pipe = current_model.pipe_i2i
if torch.cuda.is_available():
pipe = pipe.to(device)
last_mode = "img2img"
prompt = current_model.prefix + prompt
ratio = min(height / img.height, width / img.width)
img = img.resize((int(img.width * ratio), int(img.height * ratio)), Image.LANCZOS)
result = pipe(
prompt,
negative_prompt=neg_prompt,
# num_images_per_prompt=n_images,
init_image=img,
num_inference_steps=int(steps),
strength=strength,
guidance_scale=guidance,
width=width,
height=height,
generator=generator,
)
result.images[0] = magnifier.magnify(result.images[0])
result.images[0] = magnifier.magnify(result.images[0])
# save image
result.images[0].save(
"{}/{}.{}.{}.{}.{}.{}.{}.{}.png".format(
saved_path,
datetime.datetime.now().strftime("%Y%m%d-%H%M%S"),
model_name,
prompt,
guidance,
steps,
width,
height,
seed,
)
)
return replace_nsfw_images(result)
def replace_nsfw_images(results):
if is_colab:
return results.images[0]
for i in range(len(results.images)):
if results.nsfw_content_detected[i]:
results.images[i] = Image.open("nsfw.png")
return results.images[0]
if __name__ == "__main__":
# inference("DALL-E", "a dog", 0, 1000, 512, 512, 0, None, 0.5, "")
model_name = "anything v3"
saved_path = r"imgs"
if not os.path.exists(saved_path):
os.mkdir(saved_path)
n = 0
while True:
prompt_keys = [
"beautiful eyes",
"cumulonimbus clouds",
"sky",
"detailed fingers",
random.choice(
[
"white hair",
"red hair",
"blonde hair",
"black hair",
"green hair",
]
),
random.choice(
[
"blue eyes",
"green eyes",
"red eyes",
"black eyes",
"yellow eyes",
]
),
random.choice(["flower meadow", "garden", "city", "river", "beach"]),
random.choice(["Elif", "Angel"]),
]
guidance = 7.5
steps = 25
# width = 1024
# height = 1024
# width = 768
# height = 1024
width = 512
height = 888
seed = 0
img = None
strength = 0.5
neg_prompt = ""
inference(
model_name,
".".join(prompt_keys),
guidance,
steps,
width=width,
height=height,
seed=seed,
img=img,
strength=strength,
neg_prompt=neg_prompt,
)
n += 1
fprint(n)