|
import os |
|
from basicsr.data.data_util import paired_paths_from_folder, paired_paths_from_lmdb |
|
from basicsr.data.transforms import augment, paired_random_crop |
|
from basicsr.utils import FileClient, imfrombytes, img2tensor |
|
from basicsr.utils.registry import DATASET_REGISTRY |
|
from torch.utils import data as data |
|
from torchvision.transforms.functional import normalize |
|
|
|
|
|
@DATASET_REGISTRY.register() |
|
class RealESRGANPairedDataset(data.Dataset): |
|
"""Paired image dataset for image restoration. |
|
|
|
Read LQ (Low Quality, e.g. LR (Low Resolution), blurry, noisy, etc) and GT image pairs. |
|
|
|
There are three modes: |
|
1. 'lmdb': Use lmdb files. |
|
If opt['io_backend'] == lmdb. |
|
2. 'meta_info': Use meta information file to generate paths. |
|
If opt['io_backend'] != lmdb and opt['meta_info'] is not None. |
|
3. 'folder': Scan folders to generate paths. |
|
The rest. |
|
|
|
Args: |
|
opt (dict): Config for train datasets. It contains the following keys: |
|
dataroot_gt (str): Data root path for gt. |
|
dataroot_lq (str): Data root path for lq. |
|
meta_info (str): Path for meta information file. |
|
io_backend (dict): IO backend type and other kwarg. |
|
filename_tmpl (str): Template for each filename. Note that the template excludes the file extension. |
|
Default: '{}'. |
|
gt_size (int): Cropped patched size for gt patches. |
|
use_hflip (bool): Use horizontal flips. |
|
use_rot (bool): Use rotation (use vertical flip and transposing h |
|
and w for implementation). |
|
|
|
scale (bool): Scale, which will be added automatically. |
|
phase (str): 'train' or 'val'. |
|
""" |
|
|
|
def __init__(self, opt): |
|
super(RealESRGANPairedDataset, self).__init__() |
|
self.opt = opt |
|
self.file_client = None |
|
self.io_backend_opt = opt["io_backend"] |
|
|
|
self.mean = opt["mean"] if "mean" in opt else None |
|
self.std = opt["std"] if "std" in opt else None |
|
|
|
self.gt_folder, self.lq_folder = opt["dataroot_gt"], opt["dataroot_lq"] |
|
self.filename_tmpl = opt["filename_tmpl"] if "filename_tmpl" in opt else "{}" |
|
|
|
|
|
if self.io_backend_opt["type"] == "lmdb": |
|
self.io_backend_opt["db_paths"] = [self.lq_folder, self.gt_folder] |
|
self.io_backend_opt["client_keys"] = ["lq", "gt"] |
|
self.paths = paired_paths_from_lmdb( |
|
[self.lq_folder, self.gt_folder], ["lq", "gt"] |
|
) |
|
elif "meta_info" in self.opt and self.opt["meta_info"] is not None: |
|
|
|
|
|
with open(self.opt["meta_info"]) as fin: |
|
paths = [line.strip() for line in fin] |
|
self.paths = [] |
|
for path in paths: |
|
gt_path, lq_path = path.split(", ") |
|
gt_path = os.path.join(self.gt_folder, gt_path) |
|
lq_path = os.path.join(self.lq_folder, lq_path) |
|
self.paths.append(dict([("gt_path", gt_path), ("lq_path", lq_path)])) |
|
else: |
|
|
|
|
|
|
|
self.paths = paired_paths_from_folder( |
|
[self.lq_folder, self.gt_folder], ["lq", "gt"], self.filename_tmpl |
|
) |
|
|
|
def __getitem__(self, index): |
|
if self.file_client is None: |
|
self.file_client = FileClient( |
|
self.io_backend_opt.pop("type"), **self.io_backend_opt |
|
) |
|
|
|
scale = self.opt["scale"] |
|
|
|
|
|
|
|
gt_path = self.paths[index]["gt_path"] |
|
img_bytes = self.file_client.get(gt_path, "gt") |
|
img_gt = imfrombytes(img_bytes, float32=True) |
|
lq_path = self.paths[index]["lq_path"] |
|
img_bytes = self.file_client.get(lq_path, "lq") |
|
img_lq = imfrombytes(img_bytes, float32=True) |
|
|
|
|
|
if self.opt["phase"] == "train": |
|
gt_size = self.opt["gt_size"] |
|
|
|
img_gt, img_lq = paired_random_crop(img_gt, img_lq, gt_size, scale, gt_path) |
|
|
|
img_gt, img_lq = augment( |
|
[img_gt, img_lq], self.opt["use_hflip"], self.opt["use_rot"] |
|
) |
|
|
|
|
|
img_gt, img_lq = img2tensor([img_gt, img_lq], bgr2rgb=True, float32=True) |
|
|
|
if self.mean is not None or self.std is not None: |
|
normalize(img_lq, self.mean, self.std, inplace=True) |
|
normalize(img_gt, self.mean, self.std, inplace=True) |
|
|
|
return {"lq": img_lq, "gt": img_gt, "lq_path": lq_path, "gt_path": gt_path} |
|
|
|
def __len__(self): |
|
return len(self.paths) |
|
|