yangheng clefourrier HF staff commited on
Commit
f78085b
0 Parent(s):

Duplicate from demo-leaderboard-backend/leaderboard

Browse files

Co-authored-by: Clémentine Fourrier <clefourrier@users.noreply.huggingface.co>

.gitattributes ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
5
+ *.ckpt filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
+ *.model filter=lfs diff=lfs merge=lfs -text
13
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
14
+ *.npy filter=lfs diff=lfs merge=lfs -text
15
+ *.npz filter=lfs diff=lfs merge=lfs -text
16
+ *.onnx filter=lfs diff=lfs merge=lfs -text
17
+ *.ot filter=lfs diff=lfs merge=lfs -text
18
+ *.parquet filter=lfs diff=lfs merge=lfs -text
19
+ *.pb filter=lfs diff=lfs merge=lfs -text
20
+ *.pickle filter=lfs diff=lfs merge=lfs -text
21
+ *.pkl filter=lfs diff=lfs merge=lfs -text
22
+ *.pt filter=lfs diff=lfs merge=lfs -text
23
+ *.pth filter=lfs diff=lfs merge=lfs -text
24
+ *.rar filter=lfs diff=lfs merge=lfs -text
25
+ *.safetensors filter=lfs diff=lfs merge=lfs -text
26
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
27
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
28
+ *.tflite filter=lfs diff=lfs merge=lfs -text
29
+ *.tgz filter=lfs diff=lfs merge=lfs -text
30
+ *.wasm filter=lfs diff=lfs merge=lfs -text
31
+ *.xz filter=lfs diff=lfs merge=lfs -text
32
+ *.zip filter=lfs diff=lfs merge=lfs -text
33
+ *.zst filter=lfs diff=lfs merge=lfs -text
34
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ scale-hf-logo.png filter=lfs diff=lfs merge=lfs -text
.gitignore ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ auto_evals/
2
+ venv/
3
+ __pycache__/
4
+ .env
5
+ .ipynb_checkpoints
6
+ *ipynb
7
+ .vscode/
8
+
9
+ eval-queue/
10
+ eval-results/
11
+ eval-queue-bk/
12
+ eval-results-bk/
13
+ logs/
.pre-commit-config.yaml ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ default_language_version:
16
+ python: python3
17
+
18
+ ci:
19
+ autofix_prs: true
20
+ autoupdate_commit_msg: '[pre-commit.ci] pre-commit suggestions'
21
+ autoupdate_schedule: quarterly
22
+
23
+ repos:
24
+ - repo: https://github.com/pre-commit/pre-commit-hooks
25
+ rev: v4.3.0
26
+ hooks:
27
+ - id: check-yaml
28
+ - id: check-case-conflict
29
+ - id: detect-private-key
30
+ - id: check-added-large-files
31
+ args: ['--maxkb=1000']
32
+ - id: requirements-txt-fixer
33
+ - id: end-of-file-fixer
34
+ - id: trailing-whitespace
35
+
36
+ - repo: https://github.com/PyCQA/isort
37
+ rev: 5.12.0
38
+ hooks:
39
+ - id: isort
40
+ name: Format imports
41
+
42
+ - repo: https://github.com/psf/black
43
+ rev: 22.12.0
44
+ hooks:
45
+ - id: black
46
+ name: Format code
47
+ additional_dependencies: ['click==8.0.2']
48
+
49
+ - repo: https://github.com/charliermarsh/ruff-pre-commit
50
+ # Ruff version.
51
+ rev: 'v0.0.267'
52
+ hooks:
53
+ - id: ruff
Makefile ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ .PHONY: style format
2
+
3
+
4
+ style:
5
+ python -m black --line-length 119 .
6
+ python -m isort .
7
+ ruff check --fix .
8
+
9
+
10
+ quality:
11
+ python -m black --check --line-length 119 .
12
+ python -m isort --check-only .
13
+ ruff check .
README.md ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: Demo Leaderboard
3
+ emoji: 🥇
4
+ colorFrom: green
5
+ colorTo: indigo
6
+ sdk: gradio
7
+ sdk_version: 4.4.0
8
+ app_file: app.py
9
+ pinned: true
10
+ license: apache-2.0
11
+ ---
12
+
13
+ # Start the configuration
14
+
15
+ Most of the variables to change for a default leaderboard are in `src/env.py` (replace the path for your leaderboard) and `src/about.py` (for tasks).
16
+
17
+ Results files should have the following format and be stored as json files:
18
+ ```json
19
+ {
20
+ "config": {
21
+ "model_dtype": "torch.float16", # or torch.bfloat16 or 8bit or 4bit
22
+ "model_name": "path of the model on the hub: org/model",
23
+ "model_sha": "revision on the hub",
24
+ },
25
+ "results": {
26
+ "task_name": {
27
+ "metric_name": score,
28
+ },
29
+ "task_name2": {
30
+ "metric_name": score,
31
+ }
32
+ }
33
+ }
34
+ ```
35
+
36
+ Request files are created automatically by this tool.
37
+
38
+ If you encounter problem on the space, don't hesitate to restart it to remove the create eval-queue, eval-queue-bk, eval-results and eval-results-bk created folder.
39
+
40
+ # Code logic for more complex edits
41
+
42
+ You'll find
43
+ - the main table' columns names and properties in `src/display/utils.py`
44
+ - the logic to read all results and request files, then convert them in dataframe lines, in `src/leaderboard/read_evals.py`, and `src/populate.py`
45
+ - teh logic to allow or filter submissions in `src/submission/submit.py` and `src/submission/check_validity.py`
app.py ADDED
@@ -0,0 +1,345 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import subprocess
2
+ import gradio as gr
3
+ import pandas as pd
4
+ from apscheduler.schedulers.background import BackgroundScheduler
5
+ from huggingface_hub import snapshot_download
6
+
7
+ from src.about import (
8
+ CITATION_BUTTON_LABEL,
9
+ CITATION_BUTTON_TEXT,
10
+ EVALUATION_QUEUE_TEXT,
11
+ INTRODUCTION_TEXT,
12
+ LLM_BENCHMARKS_TEXT,
13
+ TITLE,
14
+ )
15
+ from src.display.css_html_js import custom_css
16
+ from src.display.utils import (
17
+ BENCHMARK_COLS,
18
+ COLS,
19
+ EVAL_COLS,
20
+ EVAL_TYPES,
21
+ NUMERIC_INTERVALS,
22
+ TYPES,
23
+ AutoEvalColumn,
24
+ ModelType,
25
+ fields,
26
+ WeightType,
27
+ Precision
28
+ )
29
+ from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN
30
+ from src.populate import get_evaluation_queue_df, get_leaderboard_df
31
+ from src.submission.submit import add_new_eval
32
+
33
+
34
+ def restart_space():
35
+ API.restart_space(repo_id=REPO_ID)
36
+
37
+ try:
38
+ print(EVAL_REQUESTS_PATH)
39
+ snapshot_download(
40
+ repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
41
+ )
42
+ except Exception:
43
+ restart_space()
44
+ try:
45
+ print(EVAL_RESULTS_PATH)
46
+ snapshot_download(
47
+ repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN
48
+ )
49
+ except Exception:
50
+ restart_space()
51
+
52
+
53
+ raw_data, original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
54
+ leaderboard_df = original_df.copy()
55
+
56
+ (
57
+ finished_eval_queue_df,
58
+ running_eval_queue_df,
59
+ pending_eval_queue_df,
60
+ ) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS)
61
+
62
+
63
+ # Searching and filtering
64
+ def update_table(
65
+ hidden_df: pd.DataFrame,
66
+ columns: list,
67
+ type_query: list,
68
+ precision_query: str,
69
+ size_query: list,
70
+ show_deleted: bool,
71
+ query: str,
72
+ ):
73
+ filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted)
74
+ filtered_df = filter_queries(query, filtered_df)
75
+ df = select_columns(filtered_df, columns)
76
+ return df
77
+
78
+
79
+ def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
80
+ return df[(df[AutoEvalColumn.model.name].str.contains(query, case=False))]
81
+
82
+
83
+ def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
84
+ always_here_cols = [
85
+ AutoEvalColumn.model_type_symbol.name,
86
+ AutoEvalColumn.model.name,
87
+ ]
88
+ # We use COLS to maintain sorting
89
+ filtered_df = df[
90
+ always_here_cols + [c for c in COLS if c in df.columns and c in columns]
91
+ ]
92
+ return filtered_df
93
+
94
+
95
+ def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
96
+ final_df = []
97
+ if query != "":
98
+ queries = [q.strip() for q in query.split(";")]
99
+ for _q in queries:
100
+ _q = _q.strip()
101
+ if _q != "":
102
+ temp_filtered_df = search_table(filtered_df, _q)
103
+ if len(temp_filtered_df) > 0:
104
+ final_df.append(temp_filtered_df)
105
+ if len(final_df) > 0:
106
+ filtered_df = pd.concat(final_df)
107
+ filtered_df = filtered_df.drop_duplicates(
108
+ subset=[AutoEvalColumn.model.name, AutoEvalColumn.precision.name, AutoEvalColumn.revision.name]
109
+ )
110
+
111
+ return filtered_df
112
+
113
+
114
+ def filter_models(
115
+ df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool
116
+ ) -> pd.DataFrame:
117
+ # Show all models
118
+ if show_deleted:
119
+ filtered_df = df
120
+ else: # Show only still on the hub models
121
+ filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
122
+
123
+ type_emoji = [t[0] for t in type_query]
124
+ filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
125
+ filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
126
+
127
+ numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
128
+ params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
129
+ mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
130
+ filtered_df = filtered_df.loc[mask]
131
+
132
+ return filtered_df
133
+
134
+
135
+ demo = gr.Blocks(css=custom_css)
136
+ with demo:
137
+ gr.HTML(TITLE)
138
+ gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
139
+
140
+ with gr.Tabs(elem_classes="tab-buttons") as tabs:
141
+ with gr.TabItem("🏅 LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
142
+ with gr.Row():
143
+ with gr.Column():
144
+ with gr.Row():
145
+ search_bar = gr.Textbox(
146
+ placeholder=" 🔍 Search for your model (separate multiple queries with `;`) and press ENTER...",
147
+ show_label=False,
148
+ elem_id="search-bar",
149
+ )
150
+ with gr.Row():
151
+ shown_columns = gr.CheckboxGroup(
152
+ choices=[
153
+ c.name
154
+ for c in fields(AutoEvalColumn)
155
+ if not c.hidden and not c.never_hidden
156
+ ],
157
+ value=[
158
+ c.name
159
+ for c in fields(AutoEvalColumn)
160
+ if c.displayed_by_default and not c.hidden and not c.never_hidden
161
+ ],
162
+ label="Select columns to show",
163
+ elem_id="column-select",
164
+ interactive=True,
165
+ )
166
+ with gr.Row():
167
+ deleted_models_visibility = gr.Checkbox(
168
+ value=False, label="Show gated/private/deleted models", interactive=True
169
+ )
170
+ with gr.Column(min_width=320):
171
+ #with gr.Box(elem_id="box-filter"):
172
+ filter_columns_type = gr.CheckboxGroup(
173
+ label="Model types",
174
+ choices=[t.to_str() for t in ModelType],
175
+ value=[t.to_str() for t in ModelType],
176
+ interactive=True,
177
+ elem_id="filter-columns-type",
178
+ )
179
+ filter_columns_precision = gr.CheckboxGroup(
180
+ label="Precision",
181
+ choices=[i.value.name for i in Precision],
182
+ value=[i.value.name for i in Precision],
183
+ interactive=True,
184
+ elem_id="filter-columns-precision",
185
+ )
186
+ filter_columns_size = gr.CheckboxGroup(
187
+ label="Model sizes (in billions of parameters)",
188
+ choices=list(NUMERIC_INTERVALS.keys()),
189
+ value=list(NUMERIC_INTERVALS.keys()),
190
+ interactive=True,
191
+ elem_id="filter-columns-size",
192
+ )
193
+
194
+ leaderboard_table = gr.components.Dataframe(
195
+ value=leaderboard_df[
196
+ [c.name for c in fields(AutoEvalColumn) if c.never_hidden]
197
+ + shown_columns.value
198
+ ],
199
+ headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
200
+ datatype=TYPES,
201
+ elem_id="leaderboard-table",
202
+ interactive=False,
203
+ visible=True,
204
+ )
205
+
206
+ # Dummy leaderboard for handling the case when the user uses backspace key
207
+ hidden_leaderboard_table_for_search = gr.components.Dataframe(
208
+ value=original_df[COLS],
209
+ headers=COLS,
210
+ datatype=TYPES,
211
+ visible=False,
212
+ )
213
+ search_bar.submit(
214
+ update_table,
215
+ [
216
+ hidden_leaderboard_table_for_search,
217
+ shown_columns,
218
+ filter_columns_type,
219
+ filter_columns_precision,
220
+ filter_columns_size,
221
+ deleted_models_visibility,
222
+ search_bar,
223
+ ],
224
+ leaderboard_table,
225
+ )
226
+ for selector in [shown_columns, filter_columns_type, filter_columns_precision, filter_columns_size, deleted_models_visibility]:
227
+ selector.change(
228
+ update_table,
229
+ [
230
+ hidden_leaderboard_table_for_search,
231
+ shown_columns,
232
+ filter_columns_type,
233
+ filter_columns_precision,
234
+ filter_columns_size,
235
+ deleted_models_visibility,
236
+ search_bar,
237
+ ],
238
+ leaderboard_table,
239
+ queue=True,
240
+ )
241
+
242
+ with gr.TabItem("📝 About", elem_id="llm-benchmark-tab-table", id=2):
243
+ gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
244
+
245
+ with gr.TabItem("🚀 Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
246
+ with gr.Column():
247
+ with gr.Row():
248
+ gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
249
+
250
+ with gr.Column():
251
+ with gr.Accordion(
252
+ f"✅ Finished Evaluations ({len(finished_eval_queue_df)})",
253
+ open=False,
254
+ ):
255
+ with gr.Row():
256
+ finished_eval_table = gr.components.Dataframe(
257
+ value=finished_eval_queue_df,
258
+ headers=EVAL_COLS,
259
+ datatype=EVAL_TYPES,
260
+ row_count=5,
261
+ )
262
+ with gr.Accordion(
263
+ f"🔄 Running Evaluation Queue ({len(running_eval_queue_df)})",
264
+ open=False,
265
+ ):
266
+ with gr.Row():
267
+ running_eval_table = gr.components.Dataframe(
268
+ value=running_eval_queue_df,
269
+ headers=EVAL_COLS,
270
+ datatype=EVAL_TYPES,
271
+ row_count=5,
272
+ )
273
+
274
+ with gr.Accordion(
275
+ f"⏳ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
276
+ open=False,
277
+ ):
278
+ with gr.Row():
279
+ pending_eval_table = gr.components.Dataframe(
280
+ value=pending_eval_queue_df,
281
+ headers=EVAL_COLS,
282
+ datatype=EVAL_TYPES,
283
+ row_count=5,
284
+ )
285
+ with gr.Row():
286
+ gr.Markdown("# ✉️✨ Submit your model here!", elem_classes="markdown-text")
287
+
288
+ with gr.Row():
289
+ with gr.Column():
290
+ model_name_textbox = gr.Textbox(label="Model name")
291
+ revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
292
+ model_type = gr.Dropdown(
293
+ choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown],
294
+ label="Model type",
295
+ multiselect=False,
296
+ value=None,
297
+ interactive=True,
298
+ )
299
+
300
+ with gr.Column():
301
+ precision = gr.Dropdown(
302
+ choices=[i.value.name for i in Precision if i != Precision.Unknown],
303
+ label="Precision",
304
+ multiselect=False,
305
+ value="float16",
306
+ interactive=True,
307
+ )
308
+ weight_type = gr.Dropdown(
309
+ choices=[i.value.name for i in WeightType],
310
+ label="Weights type",
311
+ multiselect=False,
312
+ value="Original",
313
+ interactive=True,
314
+ )
315
+ base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
316
+
317
+ submit_button = gr.Button("Submit Eval")
318
+ submission_result = gr.Markdown()
319
+ submit_button.click(
320
+ add_new_eval,
321
+ [
322
+ model_name_textbox,
323
+ base_model_name_textbox,
324
+ revision_name_textbox,
325
+ precision,
326
+ weight_type,
327
+ model_type,
328
+ ],
329
+ submission_result,
330
+ )
331
+
332
+ with gr.Row():
333
+ with gr.Accordion("📙 Citation", open=False):
334
+ citation_button = gr.Textbox(
335
+ value=CITATION_BUTTON_TEXT,
336
+ label=CITATION_BUTTON_LABEL,
337
+ lines=20,
338
+ elem_id="citation-button",
339
+ show_copy_button=True,
340
+ )
341
+
342
+ scheduler = BackgroundScheduler()
343
+ scheduler.add_job(restart_space, "interval", seconds=1800)
344
+ scheduler.start()
345
+ demo.queue(default_concurrency_limit=40).launch()
pyproject.toml ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [tool.ruff]
2
+ # Enable pycodestyle (`E`) and Pyflakes (`F`) codes by default.
3
+ select = ["E", "F"]
4
+ ignore = ["E501"] # line too long (black is taking care of this)
5
+ line-length = 119
6
+ fixable = ["A", "B", "C", "D", "E", "F", "G", "I", "N", "Q", "S", "T", "W", "ANN", "ARG", "BLE", "COM", "DJ", "DTZ", "EM", "ERA", "EXE", "FBT", "ICN", "INP", "ISC", "NPY", "PD", "PGH", "PIE", "PL", "PT", "PTH", "PYI", "RET", "RSE", "RUF", "SIM", "SLF", "TCH", "TID", "TRY", "UP", "YTT"]
7
+
8
+ [tool.isort]
9
+ profile = "black"
10
+ line_length = 119
11
+
12
+ [tool.black]
13
+ line-length = 119
requirements.txt ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ APScheduler==3.10.1
2
+ black==23.11.0
3
+ click==8.1.3
4
+ datasets==2.14.5
5
+ gradio==4.4.0
6
+ gradio_client==0.7.0
7
+ huggingface-hub>=0.18.0
8
+ matplotlib==3.7.1
9
+ numpy==1.24.2
10
+ pandas==2.0.0
11
+ python-dateutil==2.8.2
12
+ requests==2.28.2
13
+ tqdm==4.65.0
14
+ transformers==4.35.2
15
+ tokenizers>=0.15.0
16
+ git+https://github.com/EleutherAI/lm-evaluation-harness.git@b281b0921b636bc36ad05c0b0b0763bd6dd43463#egg=lm-eval
17
+ accelerate==0.24.1
18
+ sentencepiece
src/about.py ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from dataclasses import dataclass
2
+ from enum import Enum
3
+
4
+ @dataclass
5
+ class Task:
6
+ benchmark: str
7
+ metric: str
8
+ col_name: str
9
+
10
+
11
+ # Select your tasks here
12
+ # ---------------------------------------------------
13
+ class Tasks(Enum):
14
+ # task_key in the json file, metric_key in the json file, name to display in the leaderboard
15
+ task0 = Task("anli_r1", "acc", "ANLI")
16
+ task1 = Task("logiqa", "acc_norm", "LogiQA")
17
+
18
+ NUM_FEWSHOT = 0 # Change with your few shot
19
+ # ---------------------------------------------------
20
+
21
+
22
+
23
+ # Your leaderboard name
24
+ TITLE = """<h1 align="center" id="space-title">Demo leaderboard</h1>"""
25
+
26
+ # What does your leaderboard evaluate?
27
+ INTRODUCTION_TEXT = """
28
+ Intro text
29
+ """
30
+
31
+ # Which evaluations are you running? how can people reproduce what you have?
32
+ LLM_BENCHMARKS_TEXT = f"""
33
+ ## How it works
34
+
35
+ ## Reproducibility
36
+ To reproduce our results, here is the commands you can run:
37
+
38
+ """
39
+
40
+ EVALUATION_QUEUE_TEXT = """
41
+ ## Some good practices before submitting a model
42
+
43
+ ### 1) Make sure you can load your model and tokenizer using AutoClasses:
44
+ ```python
45
+ from transformers import AutoConfig, AutoModel, AutoTokenizer
46
+ config = AutoConfig.from_pretrained("your model name", revision=revision)
47
+ model = AutoModel.from_pretrained("your model name", revision=revision)
48
+ tokenizer = AutoTokenizer.from_pretrained("your model name", revision=revision)
49
+ ```
50
+ If this step fails, follow the error messages to debug your model before submitting it. It's likely your model has been improperly uploaded.
51
+
52
+ Note: make sure your model is public!
53
+ Note: if your model needs `use_remote_code=True`, we do not support this option yet but we are working on adding it, stay posted!
54
+
55
+ ### 2) Convert your model weights to [safetensors](https://huggingface.co/docs/safetensors/index)
56
+ It's a new format for storing weights which is safer and faster to load and use. It will also allow us to add the number of parameters of your model to the `Extended Viewer`!
57
+
58
+ ### 3) Make sure your model has an open license!
59
+ This is a leaderboard for Open LLMs, and we'd love for as many people as possible to know they can use your model 🤗
60
+
61
+ ### 4) Fill up your model card
62
+ When we add extra information about models to the leaderboard, it will be automatically taken from the model card
63
+
64
+ ## In case of model failure
65
+ If your model is displayed in the `FAILED` category, its execution stopped.
66
+ Make sure you have followed the above steps first.
67
+ If everything is done, check you can launch the EleutherAIHarness on your model locally, using the above command without modifications (you can add `--limit` to limit the number of examples per task).
68
+ """
69
+
70
+ CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
71
+ CITATION_BUTTON_TEXT = r"""
72
+ """
src/display/css_html_js.py ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ custom_css = """
2
+
3
+ .markdown-text {
4
+ font-size: 16px !important;
5
+ }
6
+
7
+ #models-to-add-text {
8
+ font-size: 18px !important;
9
+ }
10
+
11
+ #citation-button span {
12
+ font-size: 16px !important;
13
+ }
14
+
15
+ #citation-button textarea {
16
+ font-size: 16px !important;
17
+ }
18
+
19
+ #citation-button > label > button {
20
+ margin: 6px;
21
+ transform: scale(1.3);
22
+ }
23
+
24
+ #leaderboard-table {
25
+ margin-top: 15px
26
+ }
27
+
28
+ #leaderboard-table-lite {
29
+ margin-top: 15px
30
+ }
31
+
32
+ #search-bar-table-box > div:first-child {
33
+ background: none;
34
+ border: none;
35
+ }
36
+
37
+ #search-bar {
38
+ padding: 0px;
39
+ }
40
+
41
+ /* Limit the width of the first AutoEvalColumn so that names don't expand too much */
42
+ table td:first-child,
43
+ table th:first-child {
44
+ max-width: 400px;
45
+ overflow: auto;
46
+ white-space: nowrap;
47
+ }
48
+
49
+ .tab-buttons button {
50
+ font-size: 20px;
51
+ }
52
+
53
+ #scale-logo {
54
+ border-style: none !important;
55
+ box-shadow: none;
56
+ display: block;
57
+ margin-left: auto;
58
+ margin-right: auto;
59
+ max-width: 600px;
60
+ }
61
+
62
+ #scale-logo .download {
63
+ display: none;
64
+ }
65
+ #filter_type{
66
+ border: 0;
67
+ padding-left: 0;
68
+ padding-top: 0;
69
+ }
70
+ #filter_type label {
71
+ display: flex;
72
+ }
73
+ #filter_type label > span{
74
+ margin-top: var(--spacing-lg);
75
+ margin-right: 0.5em;
76
+ }
77
+ #filter_type label > .wrap{
78
+ width: 103px;
79
+ }
80
+ #filter_type label > .wrap .wrap-inner{
81
+ padding: 2px;
82
+ }
83
+ #filter_type label > .wrap .wrap-inner input{
84
+ width: 1px
85
+ }
86
+ #filter-columns-type{
87
+ border:0;
88
+ padding:0.5;
89
+ }
90
+ #filter-columns-size{
91
+ border:0;
92
+ padding:0.5;
93
+ }
94
+ #box-filter > .form{
95
+ border: 0
96
+ }
97
+ """
98
+
99
+ get_window_url_params = """
100
+ function(url_params) {
101
+ const params = new URLSearchParams(window.location.search);
102
+ url_params = Object.fromEntries(params);
103
+ return url_params;
104
+ }
105
+ """
src/display/formatting.py ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ def model_hyperlink(link, model_name):
2
+ return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
3
+
4
+
5
+ def make_clickable_model(model_name):
6
+ link = f"https://huggingface.co/{model_name}"
7
+ return model_hyperlink(link, model_name)
8
+
9
+
10
+ def styled_error(error):
11
+ return f"<p style='color: red; font-size: 20px; text-align: center;'>{error}</p>"
12
+
13
+
14
+ def styled_warning(warn):
15
+ return f"<p style='color: orange; font-size: 20px; text-align: center;'>{warn}</p>"
16
+
17
+
18
+ def styled_message(message):
19
+ return f"<p style='color: green; font-size: 20px; text-align: center;'>{message}</p>"
20
+
21
+
22
+ def has_no_nan_values(df, columns):
23
+ return df[columns].notna().all(axis=1)
24
+
25
+
26
+ def has_nan_values(df, columns):
27
+ return df[columns].isna().any(axis=1)
src/display/utils.py ADDED
@@ -0,0 +1,135 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from dataclasses import dataclass, make_dataclass
2
+ from enum import Enum
3
+
4
+ import pandas as pd
5
+
6
+ from src.about import Tasks
7
+
8
+ def fields(raw_class):
9
+ return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"]
10
+
11
+
12
+ # These classes are for user facing column names,
13
+ # to avoid having to change them all around the code
14
+ # when a modif is needed
15
+ @dataclass
16
+ class ColumnContent:
17
+ name: str
18
+ type: str
19
+ displayed_by_default: bool
20
+ hidden: bool = False
21
+ never_hidden: bool = False
22
+
23
+ ## Leaderboard columns
24
+ auto_eval_column_dict = []
25
+ # Init
26
+ auto_eval_column_dict.append(["model_type_symbol", ColumnContent, ColumnContent("T", "str", True, never_hidden=True)])
27
+ auto_eval_column_dict.append(["model", ColumnContent, ColumnContent("Model", "markdown", True, never_hidden=True)])
28
+ #Scores
29
+ auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average ⬆️", "number", True)])
30
+ for task in Tasks:
31
+ auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
32
+ # Model information
33
+ auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
34
+ auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
35
+ auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
36
+ auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
37
+ auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
38
+ auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
39
+ auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)])
40
+ auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
41
+ auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
42
+
43
+ # We use make dataclass to dynamically fill the scores from Tasks
44
+ AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True)
45
+
46
+ ## For the queue columns in the submission tab
47
+ @dataclass(frozen=True)
48
+ class EvalQueueColumn: # Queue column
49
+ model = ColumnContent("model", "markdown", True)
50
+ revision = ColumnContent("revision", "str", True)
51
+ private = ColumnContent("private", "bool", True)
52
+ precision = ColumnContent("precision", "str", True)
53
+ weight_type = ColumnContent("weight_type", "str", "Original")
54
+ status = ColumnContent("status", "str", True)
55
+
56
+ ## All the model information that we might need
57
+ @dataclass
58
+ class ModelDetails:
59
+ name: str
60
+ display_name: str = ""
61
+ symbol: str = "" # emoji
62
+
63
+
64
+ class ModelType(Enum):
65
+ PT = ModelDetails(name="pretrained", symbol="🟢")
66
+ FT = ModelDetails(name="fine-tuned", symbol="🔶")
67
+ IFT = ModelDetails(name="instruction-tuned", symbol="⭕")
68
+ RL = ModelDetails(name="RL-tuned", symbol="🟦")
69
+ Unknown = ModelDetails(name="", symbol="?")
70
+
71
+ def to_str(self, separator=" "):
72
+ return f"{self.value.symbol}{separator}{self.value.name}"
73
+
74
+ @staticmethod
75
+ def from_str(type):
76
+ if "fine-tuned" in type or "🔶" in type:
77
+ return ModelType.FT
78
+ if "pretrained" in type or "🟢" in type:
79
+ return ModelType.PT
80
+ if "RL-tuned" in type or "🟦" in type:
81
+ return ModelType.RL
82
+ if "instruction-tuned" in type or "⭕" in type:
83
+ return ModelType.IFT
84
+ return ModelType.Unknown
85
+
86
+ class WeightType(Enum):
87
+ Adapter = ModelDetails("Adapter")
88
+ Original = ModelDetails("Original")
89
+ Delta = ModelDetails("Delta")
90
+
91
+ class Precision(Enum):
92
+ float16 = ModelDetails("float16")
93
+ bfloat16 = ModelDetails("bfloat16")
94
+ float32 = ModelDetails("float32")
95
+ #qt_8bit = ModelDetails("8bit")
96
+ #qt_4bit = ModelDetails("4bit")
97
+ #qt_GPTQ = ModelDetails("GPTQ")
98
+ Unknown = ModelDetails("?")
99
+
100
+ def from_str(precision):
101
+ if precision in ["torch.float16", "float16"]:
102
+ return Precision.float16
103
+ if precision in ["torch.bfloat16", "bfloat16"]:
104
+ return Precision.bfloat16
105
+ if precision in ["float32"]:
106
+ return Precision.float32
107
+ #if precision in ["8bit"]:
108
+ # return Precision.qt_8bit
109
+ #if precision in ["4bit"]:
110
+ # return Precision.qt_4bit
111
+ #if precision in ["GPTQ", "None"]:
112
+ # return Precision.qt_GPTQ
113
+ return Precision.Unknown
114
+
115
+ # Column selection
116
+ COLS = [c.name for c in fields(AutoEvalColumn) if not c.hidden]
117
+ TYPES = [c.type for c in fields(AutoEvalColumn) if not c.hidden]
118
+ COLS_LITE = [c.name for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
119
+ TYPES_LITE = [c.type for c in fields(AutoEvalColumn) if c.displayed_by_default and not c.hidden]
120
+
121
+ EVAL_COLS = [c.name for c in fields(EvalQueueColumn)]
122
+ EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
123
+
124
+ BENCHMARK_COLS = [t.value.col_name for t in Tasks]
125
+
126
+ NUMERIC_INTERVALS = {
127
+ "?": pd.Interval(-1, 0, closed="right"),
128
+ "~1.5": pd.Interval(0, 2, closed="right"),
129
+ "~3": pd.Interval(2, 4, closed="right"),
130
+ "~7": pd.Interval(4, 9, closed="right"),
131
+ "~13": pd.Interval(9, 20, closed="right"),
132
+ "~35": pd.Interval(20, 45, closed="right"),
133
+ "~60": pd.Interval(45, 70, closed="right"),
134
+ "70+": pd.Interval(70, 10000, closed="right"),
135
+ }
src/envs.py ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+
3
+ from huggingface_hub import HfApi
4
+
5
+ # Info to change for your repository
6
+ # ----------------------------------
7
+ TOKEN = os.environ.get("TOKEN") # A read/write token for your org
8
+
9
+ OWNER = "demo-leaderboard-backend" # Change to your org - don't forget to create a results and request dataset, with the correct format!
10
+ # ----------------------------------
11
+
12
+ REPO_ID = f"{OWNER}/leaderboard"
13
+ QUEUE_REPO = f"{OWNER}/requests"
14
+ RESULTS_REPO = f"{OWNER}/results"
15
+
16
+ # If you setup a cache later, just change HF_HOME
17
+ CACHE_PATH=os.getenv("HF_HOME", ".")
18
+
19
+ # Local caches
20
+ EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "eval-queue")
21
+ EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results")
22
+ EVAL_REQUESTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-queue-bk")
23
+ EVAL_RESULTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-results-bk")
24
+
25
+ API = HfApi(token=TOKEN)
src/leaderboard/read_evals.py ADDED
@@ -0,0 +1,196 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import glob
2
+ import json
3
+ import math
4
+ import os
5
+ from dataclasses import dataclass
6
+
7
+ import dateutil
8
+ import numpy as np
9
+
10
+ from src.display.formatting import make_clickable_model
11
+ from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType
12
+ from src.submission.check_validity import is_model_on_hub
13
+
14
+
15
+ @dataclass
16
+ class EvalResult:
17
+ """Represents one full evaluation. Built from a combination of the result and request file for a given run.
18
+ """
19
+ eval_name: str # org_model_precision (uid)
20
+ full_model: str # org/model (path on hub)
21
+ org: str
22
+ model: str
23
+ revision: str # commit hash, "" if main
24
+ results: dict
25
+ precision: Precision = Precision.Unknown
26
+ model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
27
+ weight_type: WeightType = WeightType.Original # Original or Adapter
28
+ architecture: str = "Unknown"
29
+ license: str = "?"
30
+ likes: int = 0
31
+ num_params: int = 0
32
+ date: str = "" # submission date of request file
33
+ still_on_hub: bool = False
34
+
35
+ @classmethod
36
+ def init_from_json_file(self, json_filepath):
37
+ """Inits the result from the specific model result file"""
38
+ with open(json_filepath) as fp:
39
+ data = json.load(fp)
40
+
41
+ config = data.get("config")
42
+
43
+ # Precision
44
+ precision = Precision.from_str(config.get("model_dtype"))
45
+
46
+ # Get model and org
47
+ org_and_model = config.get("model_name", config.get("model_args", None))
48
+ org_and_model = org_and_model.split("/", 1)
49
+
50
+ if len(org_and_model) == 1:
51
+ org = None
52
+ model = org_and_model[0]
53
+ result_key = f"{model}_{precision.value.name}"
54
+ else:
55
+ org = org_and_model[0]
56
+ model = org_and_model[1]
57
+ result_key = f"{org}_{model}_{precision.value.name}"
58
+ full_model = "/".join(org_and_model)
59
+
60
+ still_on_hub, _, model_config = is_model_on_hub(
61
+ full_model, config.get("model_sha", "main"), trust_remote_code=True, test_tokenizer=False
62
+ )
63
+ architecture = "?"
64
+ if model_config is not None:
65
+ architectures = getattr(model_config, "architectures", None)
66
+ if architectures:
67
+ architecture = ";".join(architectures)
68
+
69
+ # Extract results available in this file (some results are split in several files)
70
+ results = {}
71
+ for task in Tasks:
72
+ task = task.value
73
+
74
+ # We average all scores of a given metric (not all metrics are present in all files)
75
+ accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark == k])
76
+ if accs.size == 0 or any([acc is None for acc in accs]):
77
+ continue
78
+
79
+ mean_acc = np.mean(accs) * 100.0
80
+ results[task.benchmark] = mean_acc
81
+
82
+ return self(
83
+ eval_name=result_key,
84
+ full_model=full_model,
85
+ org=org,
86
+ model=model,
87
+ results=results,
88
+ precision=precision,
89
+ revision= config.get("model_sha", ""),
90
+ still_on_hub=still_on_hub,
91
+ architecture=architecture
92
+ )
93
+
94
+ def update_with_request_file(self, requests_path):
95
+ """Finds the relevant request file for the current model and updates info with it"""
96
+ request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name)
97
+
98
+ try:
99
+ with open(request_file, "r") as f:
100
+ request = json.load(f)
101
+ self.model_type = ModelType.from_str(request.get("model_type", ""))
102
+ self.weight_type = WeightType[request.get("weight_type", "Original")]
103
+ self.license = request.get("license", "?")
104
+ self.likes = request.get("likes", 0)
105
+ self.num_params = request.get("params", 0)
106
+ self.date = request.get("submitted_time", "")
107
+ except Exception:
108
+ print(f"Could not find request file for {self.org}/{self.model} with precision {self.precision.value.name}")
109
+
110
+ def to_dict(self):
111
+ """Converts the Eval Result to a dict compatible with our dataframe display"""
112
+ average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
113
+ data_dict = {
114
+ "eval_name": self.eval_name, # not a column, just a save name,
115
+ AutoEvalColumn.precision.name: self.precision.value.name,
116
+ AutoEvalColumn.model_type.name: self.model_type.value.name,
117
+ AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
118
+ AutoEvalColumn.weight_type.name: self.weight_type.value.name,
119
+ AutoEvalColumn.architecture.name: self.architecture,
120
+ AutoEvalColumn.model.name: make_clickable_model(self.full_model),
121
+ AutoEvalColumn.revision.name: self.revision,
122
+ AutoEvalColumn.average.name: average,
123
+ AutoEvalColumn.license.name: self.license,
124
+ AutoEvalColumn.likes.name: self.likes,
125
+ AutoEvalColumn.params.name: self.num_params,
126
+ AutoEvalColumn.still_on_hub.name: self.still_on_hub,
127
+ }
128
+
129
+ for task in Tasks:
130
+ data_dict[task.value.col_name] = self.results[task.value.benchmark]
131
+
132
+ return data_dict
133
+
134
+
135
+ def get_request_file_for_model(requests_path, model_name, precision):
136
+ """Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
137
+ request_files = os.path.join(
138
+ requests_path,
139
+ f"{model_name}_eval_request_*.json",
140
+ )
141
+ request_files = glob.glob(request_files)
142
+
143
+ # Select correct request file (precision)
144
+ request_file = ""
145
+ request_files = sorted(request_files, reverse=True)
146
+ for tmp_request_file in request_files:
147
+ with open(tmp_request_file, "r") as f:
148
+ req_content = json.load(f)
149
+ if (
150
+ req_content["status"] in ["FINISHED"]
151
+ and req_content["precision"] == precision.split(".")[-1]
152
+ ):
153
+ request_file = tmp_request_file
154
+ return request_file
155
+
156
+
157
+ def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResult]:
158
+ """From the path of the results folder root, extract all needed info for results"""
159
+ model_result_filepaths = []
160
+
161
+ for root, _, files in os.walk(results_path):
162
+ # We should only have json files in model results
163
+ if len(files) == 0 or any([not f.endswith(".json") for f in files]):
164
+ continue
165
+
166
+ # Sort the files by date
167
+ try:
168
+ files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7])
169
+ except dateutil.parser._parser.ParserError:
170
+ files = [files[-1]]
171
+
172
+ for file in files:
173
+ model_result_filepaths.append(os.path.join(root, file))
174
+
175
+ eval_results = {}
176
+ for model_result_filepath in model_result_filepaths:
177
+ # Creation of result
178
+ eval_result = EvalResult.init_from_json_file(model_result_filepath)
179
+ eval_result.update_with_request_file(requests_path)
180
+
181
+ # Store results of same eval together
182
+ eval_name = eval_result.eval_name
183
+ if eval_name in eval_results.keys():
184
+ eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
185
+ else:
186
+ eval_results[eval_name] = eval_result
187
+
188
+ results = []
189
+ for v in eval_results.values():
190
+ try:
191
+ v.to_dict() # we test if the dict version is complete
192
+ results.append(v)
193
+ except KeyError: # not all eval values present
194
+ continue
195
+
196
+ return results
src/populate.py ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import os
3
+
4
+ import pandas as pd
5
+
6
+ from src.display.formatting import has_no_nan_values, make_clickable_model
7
+ from src.display.utils import AutoEvalColumn, EvalQueueColumn
8
+ from src.leaderboard.read_evals import get_raw_eval_results
9
+
10
+
11
+ def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame:
12
+ """Creates a dataframe from all the individual experiment results"""
13
+ raw_data = get_raw_eval_results(results_path, requests_path)
14
+ all_data_json = [v.to_dict() for v in raw_data]
15
+
16
+ df = pd.DataFrame.from_records(all_data_json)
17
+ df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
18
+ df = df[cols].round(decimals=2)
19
+
20
+ # filter out if any of the benchmarks have not been produced
21
+ df = df[has_no_nan_values(df, benchmark_cols)]
22
+ return raw_data, df
23
+
24
+
25
+ def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]:
26
+ """Creates the different dataframes for the evaluation queues requestes"""
27
+ entries = [entry for entry in os.listdir(save_path) if not entry.startswith(".")]
28
+ all_evals = []
29
+
30
+ for entry in entries:
31
+ if ".json" in entry:
32
+ file_path = os.path.join(save_path, entry)
33
+ with open(file_path) as fp:
34
+ data = json.load(fp)
35
+
36
+ data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
37
+ data[EvalQueueColumn.revision.name] = data.get("revision", "main")
38
+
39
+ all_evals.append(data)
40
+ elif ".md" not in entry:
41
+ # this is a folder
42
+ sub_entries = [e for e in os.listdir(f"{save_path}/{entry}") if not e.startswith(".")]
43
+ for sub_entry in sub_entries:
44
+ file_path = os.path.join(save_path, entry, sub_entry)
45
+ with open(file_path) as fp:
46
+ data = json.load(fp)
47
+
48
+ data[EvalQueueColumn.model.name] = make_clickable_model(data["model"])
49
+ data[EvalQueueColumn.revision.name] = data.get("revision", "main")
50
+ all_evals.append(data)
51
+
52
+ pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]]
53
+ running_list = [e for e in all_evals if e["status"] == "RUNNING"]
54
+ finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"]
55
+ df_pending = pd.DataFrame.from_records(pending_list, columns=cols)
56
+ df_running = pd.DataFrame.from_records(running_list, columns=cols)
57
+ df_finished = pd.DataFrame.from_records(finished_list, columns=cols)
58
+ return df_finished[cols], df_running[cols], df_pending[cols]
src/submission/check_validity.py ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import os
3
+ import re
4
+ from collections import defaultdict
5
+ from datetime import datetime, timedelta, timezone
6
+
7
+ import huggingface_hub
8
+ from huggingface_hub import ModelCard
9
+ from huggingface_hub.hf_api import ModelInfo
10
+ from transformers import AutoConfig
11
+ from transformers.models.auto.tokenization_auto import AutoTokenizer
12
+
13
+ def check_model_card(repo_id: str) -> tuple[bool, str]:
14
+ """Checks if the model card and license exist and have been filled"""
15
+ try:
16
+ card = ModelCard.load(repo_id)
17
+ except huggingface_hub.utils.EntryNotFoundError:
18
+ return False, "Please add a model card to your model to explain how you trained/fine-tuned it."
19
+
20
+ # Enforce license metadata
21
+ if card.data.license is None:
22
+ if not ("license_name" in card.data and "license_link" in card.data):
23
+ return False, (
24
+ "License not found. Please add a license to your model card using the `license` metadata or a"
25
+ " `license_name`/`license_link` pair."
26
+ )
27
+
28
+ # Enforce card content
29
+ if len(card.text) < 200:
30
+ return False, "Please add a description to your model card, it is too short."
31
+
32
+ return True, ""
33
+
34
+ def is_model_on_hub(model_name: str, revision: str, token: str = None, trust_remote_code=False, test_tokenizer=False) -> tuple[bool, str]:
35
+ """Checks if the model model_name is on the hub, and whether it (and its tokenizer) can be loaded with AutoClasses."""
36
+ try:
37
+ config = AutoConfig.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token)
38
+ if test_tokenizer:
39
+ try:
40
+ tk = AutoTokenizer.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token)
41
+ except ValueError as e:
42
+ return (
43
+ False,
44
+ f"uses a tokenizer which is not in a transformers release: {e}",
45
+ None
46
+ )
47
+ except Exception as e:
48
+ return (False, "'s tokenizer cannot be loaded. Is your tokenizer class in a stable transformers release, and correctly configured?", None)
49
+ return True, None, config
50
+
51
+ except ValueError:
52
+ return (
53
+ False,
54
+ "needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.",
55
+ None
56
+ )
57
+
58
+ except Exception as e:
59
+ return False, "was not found on hub!", None
60
+
61
+
62
+ def get_model_size(model_info: ModelInfo, precision: str):
63
+ """Gets the model size from the configuration, or the model name if the configuration does not contain the information."""
64
+ try:
65
+ model_size = round(model_info.safetensors["total"] / 1e9, 3)
66
+ except (AttributeError, TypeError):
67
+ return 0 # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py
68
+
69
+ size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.modelId.lower()) else 1
70
+ model_size = size_factor * model_size
71
+ return model_size
72
+
73
+ def get_model_arch(model_info: ModelInfo):
74
+ """Gets the model architecture from the configuration"""
75
+ return model_info.config.get("architectures", "Unknown")
76
+
77
+ def already_submitted_models(requested_models_dir: str) -> set[str]:
78
+ """Gather a list of already submitted models to avoid duplicates"""
79
+ depth = 1
80
+ file_names = []
81
+ users_to_submission_dates = defaultdict(list)
82
+
83
+ for root, _, files in os.walk(requested_models_dir):
84
+ current_depth = root.count(os.sep) - requested_models_dir.count(os.sep)
85
+ if current_depth == depth:
86
+ for file in files:
87
+ if not file.endswith(".json"):
88
+ continue
89
+ with open(os.path.join(root, file), "r") as f:
90
+ info = json.load(f)
91
+ file_names.append(f"{info['model']}_{info['revision']}_{info['precision']}")
92
+
93
+ # Select organisation
94
+ if info["model"].count("/") == 0 or "submitted_time" not in info:
95
+ continue
96
+ organisation, _ = info["model"].split("/")
97
+ users_to_submission_dates[organisation].append(info["submitted_time"])
98
+
99
+ return set(file_names), users_to_submission_dates
src/submission/submit.py ADDED
@@ -0,0 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import os
3
+ from datetime import datetime, timezone
4
+
5
+ from src.display.formatting import styled_error, styled_message, styled_warning
6
+ from src.envs import API, EVAL_REQUESTS_PATH, TOKEN, QUEUE_REPO
7
+ from src.submission.check_validity import (
8
+ already_submitted_models,
9
+ check_model_card,
10
+ get_model_size,
11
+ is_model_on_hub,
12
+ )
13
+
14
+ REQUESTED_MODELS = None
15
+ USERS_TO_SUBMISSION_DATES = None
16
+
17
+ def add_new_eval(
18
+ model: str,
19
+ base_model: str,
20
+ revision: str,
21
+ precision: str,
22
+ weight_type: str,
23
+ model_type: str,
24
+ ):
25
+ global REQUESTED_MODELS
26
+ global USERS_TO_SUBMISSION_DATES
27
+ if not REQUESTED_MODELS:
28
+ REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = already_submitted_models(EVAL_REQUESTS_PATH)
29
+
30
+ user_name = ""
31
+ model_path = model
32
+ if "/" in model:
33
+ user_name = model.split("/")[0]
34
+ model_path = model.split("/")[1]
35
+
36
+ precision = precision.split(" ")[0]
37
+ current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
38
+
39
+ if model_type is None or model_type == "":
40
+ return styled_error("Please select a model type.")
41
+
42
+ # Does the model actually exist?
43
+ if revision == "":
44
+ revision = "main"
45
+
46
+ # Is the model on the hub?
47
+ if weight_type in ["Delta", "Adapter"]:
48
+ base_model_on_hub, error, _ = is_model_on_hub(model_name=base_model, revision=revision, token=TOKEN, test_tokenizer=True)
49
+ if not base_model_on_hub:
50
+ return styled_error(f'Base model "{base_model}" {error}')
51
+
52
+ if not weight_type == "Adapter":
53
+ model_on_hub, error, _ = is_model_on_hub(model_name=model, revision=revision, token=TOKEN, test_tokenizer=True)
54
+ if not model_on_hub:
55
+ return styled_error(f'Model "{model}" {error}')
56
+
57
+ # Is the model info correctly filled?
58
+ try:
59
+ model_info = API.model_info(repo_id=model, revision=revision)
60
+ except Exception:
61
+ return styled_error("Could not get your model information. Please fill it up properly.")
62
+
63
+ model_size = get_model_size(model_info=model_info, precision=precision)
64
+
65
+ # Were the model card and license filled?
66
+ try:
67
+ license = model_info.cardData["license"]
68
+ except Exception:
69
+ return styled_error("Please select a license for your model")
70
+
71
+ modelcard_OK, error_msg = check_model_card(model)
72
+ if not modelcard_OK:
73
+ return styled_error(error_msg)
74
+
75
+ # Seems good, creating the eval
76
+ print("Adding new eval")
77
+
78
+ eval_entry = {
79
+ "model": model,
80
+ "base_model": base_model,
81
+ "revision": revision,
82
+ "precision": precision,
83
+ "weight_type": weight_type,
84
+ "status": "PENDING",
85
+ "submitted_time": current_time,
86
+ "model_type": model_type,
87
+ "likes": model_info.likes,
88
+ "params": model_size,
89
+ "license": license,
90
+ "private": False,
91
+ }
92
+
93
+ # Check for duplicate submission
94
+ if f"{model}_{revision}_{precision}" in REQUESTED_MODELS:
95
+ return styled_warning("This model has been already submitted.")
96
+
97
+ print("Creating eval file")
98
+ OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
99
+ os.makedirs(OUT_DIR, exist_ok=True)
100
+ out_path = f"{OUT_DIR}/{model_path}_eval_request_False_{precision}_{weight_type}.json"
101
+
102
+ with open(out_path, "w") as f:
103
+ f.write(json.dumps(eval_entry))
104
+
105
+ print("Uploading eval file")
106
+ API.upload_file(
107
+ path_or_fileobj=out_path,
108
+ path_in_repo=out_path.split("eval-queue/")[1],
109
+ repo_id=QUEUE_REPO,
110
+ repo_type="dataset",
111
+ commit_message=f"Add {model} to eval queue",
112
+ )
113
+
114
+ # Remove the local file
115
+ os.remove(out_path)
116
+
117
+ return styled_message(
118
+ "Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list."
119
+ )