|
import os |
|
import random |
|
import gradio as gr |
|
import pandas as pd |
|
import requests |
|
|
|
from pyabsa import ATEPCCheckpointManager |
|
from pyabsa.functional.dataset.dataset_manager import download_datasets_from_github, ABSADatasetList, detect_infer_dataset |
|
|
|
download_datasets_from_github(os.getcwd()) |
|
|
|
dataset_items = {dataset.name: dataset for dataset in ABSADatasetList()} |
|
|
|
URL = 'https://api.visitorbadge.io/api/combined?path=https%3A%2F%2Fhuggingface.co%2Fspaces%2Fyangheng%2Fpyabsa_inference&label=Inference%20Count&labelColor=%2337d67a&countColor=%23f47373&style=flat&labelStyle=none' |
|
|
|
def get_example(dataset): |
|
task = 'apc' |
|
dataset_file = detect_infer_dataset(dataset_items[dataset], task) |
|
|
|
for fname in dataset_file: |
|
lines = [] |
|
if isinstance(fname, str): |
|
fname = [fname] |
|
|
|
for f in fname: |
|
print('loading: {}'.format(f)) |
|
fin = open(f, 'r', encoding='utf-8') |
|
lines.extend(fin.readlines()) |
|
fin.close() |
|
for i in range(len(lines)): |
|
lines[i] = lines[i][:lines[i].find('!sent!')].replace('[ASP]', '') |
|
return sorted(set(lines), key=lines.index) |
|
|
|
|
|
dataset_dict = {dataset.name: get_example(dataset.name) for dataset in ABSADatasetList()} |
|
aspect_extractor = ATEPCCheckpointManager.get_aspect_extractor(checkpoint='multilingual-256-2') |
|
|
|
|
|
def perform_inference(text, dataset): |
|
if not text: |
|
text = dataset_dict[dataset][random.randint(0, len(dataset_dict[dataset]) - 1)] |
|
|
|
result = aspect_extractor.extract_aspect(inference_source=[text], |
|
pred_sentiment=True) |
|
|
|
result = pd.DataFrame({ |
|
'aspect': result[0]['aspect'], |
|
'sentiment': result[0]['sentiment'], |
|
|
|
'confidence': [round(x, 4) for x in result[0]['confidence']], |
|
'position': result[0]['position'] |
|
}) |
|
requests.get(URL) |
|
return result, '{}'.format(text) |
|
|
|
|
|
demo = gr.Blocks() |
|
|
|
with demo: |
|
gr.Markdown("# <p align='center'>Multilingual Aspect-based Sentiment Analysis !</p>") |
|
gr.Markdown("""### Repo: [PyABSA](https://github.com/yangheng95/PyABSA) |
|
### Author: [Heng Yang](https://github.com/yangheng95) (杨恒) |
|
[![Downloads](https://pepy.tech/badge/pyabsa)](https://pepy.tech/project/pyabsa) |
|
[![Downloads](https://pepy.tech/badge/pyabsa/month)](https://pepy.tech/project/pyabsa) |
|
""" |
|
) |
|
gr.Markdown("Your input text should be no more than 80 words, that's the longest text we used in training. However, you can train your own model using 512 max length") |
|
gr.Markdown("**You don't need to split each Chinese (Korean, etc.) token as the provided examples, just input the natural language text.**") |
|
gr.Markdown("请确保输入的文本长度不超过200词,这是训练时的最大文本长度,过长将不会获得结果") |
|
gr.Markdown("**提供的中文等其他非拉丁语系数据集采用了空格分字,这是早期数据集的遗留问题,预测时不用对中文等语言进行空格分字**") |
|
output_dfs = [] |
|
with gr.Row(): |
|
with gr.Column(): |
|
input_sentence = gr.Textbox(placeholder='Leave this box blank and choose a dataset will give you a random example...', label="Example:") |
|
gr.Markdown("You can find the datasets at [github.com/yangheng95/ABSADatasets](https://github.com/yangheng95/ABSADatasets/tree/v1.2/datasets/text_classification)") |
|
dataset_ids = gr.Radio(choices=[dataset.name for dataset in ABSADatasetList()[:-1]], value='Laptop14', label="Datasets") |
|
inference_button = gr.Button("Let's go!") |
|
gr.Markdown("There is a [demo](https://huggingface.co/spaces/yangheng/PyABSA-ATEPC-Chinese) specialized for the Chinese langauge") |
|
gr.Markdown("This demo support many other language as well, you can try and explore the results of other languages by yourself.") |
|
|
|
with gr.Column(): |
|
output_text = gr.TextArea(label="Example:") |
|
output_df = gr.DataFrame(label="Prediction Results:") |
|
output_dfs.append(output_df) |
|
|
|
inference_button.click(fn=perform_inference, |
|
inputs=[input_sentence, dataset_ids], |
|
outputs=[output_df, output_text]) |
|
|
|
gr.Markdown("![visitor badge](https://visitor-badge.glitch.me/badge?page_id=https://huggingface.co/spaces/yangheng/Multilingual-Aspect-Based-Sentiment-Analysis)") |
|
gr.Markdown("![Visitors]({})".format(URL)) |
|
|
|
demo.launch(share=True) |
|
|