Spaces:
Build error
Build error
yama
commited on
Commit
•
2c631bc
1
Parent(s):
b2d6296
Update app.py
Browse files- app.py +366 -54
- requirements.txt +2 -3
app.py
CHANGED
@@ -1,69 +1,381 @@
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import openai
|
3 |
import os
|
4 |
-
from io import BytesIO
|
5 |
import tempfile
|
6 |
from pydub import AudioSegment
|
7 |
-
import shutil
|
8 |
|
9 |
-
def create_meeting_summary(openai_key, prompt, uploaded_audio, max_transcribe_seconds):
|
10 |
-
openai.api_key = openai_key
|
11 |
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
-
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
-
|
20 |
-
|
21 |
|
22 |
-
|
23 |
-
with tempfile.NamedTemporaryFile(delete=True, suffix=".mp3") as tmp:
|
24 |
-
compressed_audio.export(tmp.name, format="mp3")
|
25 |
|
26 |
-
|
27 |
-
transcript_text = ""
|
28 |
-
for segment in transcript.segments:
|
29 |
-
transcript_text += f"{segment['text']}\n"
|
30 |
|
31 |
-
|
32 |
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
)
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
-
|
|
|
1 |
+
# import whisper
|
2 |
+
from faster_whisper import WhisperModel
|
3 |
+
import datetime
|
4 |
+
import subprocess
|
5 |
import gradio as gr
|
6 |
+
from pathlib import Path
|
7 |
+
import pandas as pd
|
8 |
+
import re
|
9 |
+
import time
|
10 |
+
import os
|
11 |
+
import numpy as np
|
12 |
+
from sklearn.cluster import AgglomerativeClustering
|
13 |
+
from sklearn.metrics import silhouette_score
|
14 |
+
|
15 |
+
from pytube import YouTube
|
16 |
+
import yt_dlp
|
17 |
+
import torch
|
18 |
+
import pyannote.audio
|
19 |
+
from pyannote.audio.pipelines.speaker_verification import PretrainedSpeakerEmbedding
|
20 |
+
from pyannote.audio import Audio
|
21 |
+
from pyannote.core import Segment
|
22 |
+
|
23 |
+
from gpuinfo import GPUInfo
|
24 |
+
|
25 |
+
import wave
|
26 |
+
import contextlib
|
27 |
+
from transformers import pipeline
|
28 |
+
import psutil
|
29 |
+
|
30 |
import openai
|
31 |
import os
|
|
|
32 |
import tempfile
|
33 |
from pydub import AudioSegment
|
|
|
34 |
|
|
|
|
|
35 |
|
36 |
+
whisper_models = ["tiny", "base", "small", "medium", "large-v1", "large-v2"]
|
37 |
+
source_languages = {
|
38 |
+
"en": "English",
|
39 |
+
"ja": "Japanese",
|
40 |
+
}
|
41 |
+
|
42 |
+
source_language_list = [key[0] for key in source_languages.items()]
|
43 |
+
|
44 |
+
MODEL_NAME = "vumichien/whisper-medium-jp"
|
45 |
+
lang = "ja"
|
46 |
|
47 |
+
device = 0 if torch.cuda.is_available() else "cpu"
|
48 |
+
pipe = pipeline(
|
49 |
+
task="automatic-speech-recognition",
|
50 |
+
model=MODEL_NAME,
|
51 |
+
chunk_length_s=30,
|
52 |
+
device=device,
|
53 |
+
)
|
54 |
+
os.makedirs('output', exist_ok=True)
|
55 |
+
pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language=lang, task="transcribe")
|
56 |
+
|
57 |
+
embedding_model = PretrainedSpeakerEmbedding(
|
58 |
+
"speechbrain/spkrec-ecapa-voxceleb",
|
59 |
+
device=torch.device("cuda" if torch.cuda.is_available() else "cpu"))
|
60 |
+
|
61 |
+
|
62 |
+
def transcribe(microphone, file_upload):
|
63 |
+
warn_output = ""
|
64 |
+
if (microphone is not None) and (file_upload is not None):
|
65 |
+
warn_output = (
|
66 |
+
"WARNING: You've uploaded an audio file and used the microphone. "
|
67 |
+
"The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
|
68 |
+
)
|
69 |
|
70 |
+
elif (microphone is None) and (file_upload is None):
|
71 |
+
return "ERROR: You have to either use the microphone or upload an audio file"
|
72 |
|
73 |
+
file = microphone if microphone is not None else file_upload
|
|
|
|
|
74 |
|
75 |
+
text = pipe(file)["text"]
|
|
|
|
|
|
|
76 |
|
77 |
+
return warn_output + text
|
78 |
|
79 |
+
|
80 |
+
def _return_yt_html_embed(yt_url):
|
81 |
+
video_id = yt_url.split("?v=")[-1]
|
82 |
+
HTML_str = (
|
83 |
+
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
|
84 |
+
" </center>"
|
85 |
)
|
86 |
+
return HTML_str
|
87 |
+
|
88 |
+
|
89 |
+
def yt_transcribe(yt_url):
|
90 |
+
# yt = YouTube(yt_url)
|
91 |
+
# html_embed_str = _return_yt_html_embed(yt_url)
|
92 |
+
# stream = yt.streams.filter(only_audio=True)[0]
|
93 |
+
# stream.download(filename="audio.mp3")
|
94 |
+
|
95 |
+
ydl_opts = {
|
96 |
+
'format': 'bestvideo*+bestaudio/best',
|
97 |
+
'postprocessors': [{
|
98 |
+
'key': 'FFmpegExtractAudio',
|
99 |
+
'preferredcodec': 'mp3',
|
100 |
+
'preferredquality': '192',
|
101 |
+
}],
|
102 |
+
'outtmpl': 'audio.%(ext)s',
|
103 |
+
}
|
104 |
+
|
105 |
+
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
106 |
+
ydl.download([yt_url])
|
107 |
+
|
108 |
+
text = pipe("audio.mp3")["text"]
|
109 |
+
return html_embed_str, text
|
110 |
+
|
111 |
+
|
112 |
+
def convert_time(secs):
|
113 |
+
return datetime.timedelta(seconds=round(secs))
|
114 |
+
|
115 |
+
|
116 |
+
def get_youtube(video_url):
|
117 |
+
# yt = YouTube(video_url)
|
118 |
+
# abs_video_path = yt.streams.filter(progressive=True, file_extension='mp4').order_by('resolution').desc().first().download()
|
119 |
+
|
120 |
+
ydl_opts = {
|
121 |
+
'format': 'bestvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best',
|
122 |
+
}
|
123 |
+
|
124 |
+
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
125 |
+
info = ydl.extract_info(video_url, download=False)
|
126 |
+
abs_video_path = ydl.prepare_filename(info)
|
127 |
+
ydl.process_info(info)
|
128 |
+
|
129 |
+
print("Success download video")
|
130 |
+
print(abs_video_path)
|
131 |
+
return abs_video_path
|
132 |
+
|
133 |
+
|
134 |
+
def speech_to_text(video_file_path, selected_source_lang, whisper_model, num_speakers):
|
135 |
+
"""
|
136 |
+
# Transcribe youtube link using OpenAI Whisper
|
137 |
+
1. Using Open AI's Whisper model to seperate audio into segments and generate transcripts.
|
138 |
+
2. Generating speaker embeddings for each segments.
|
139 |
+
3. Applying agglomerative clustering on the embeddings to identify the speaker for each segment.
|
140 |
+
|
141 |
+
Speech Recognition is based on models from OpenAI Whisper https://github.com/openai/whisper
|
142 |
+
Speaker diarization model and pipeline from by https://github.com/pyannote/pyannote-audio
|
143 |
+
"""
|
144 |
+
|
145 |
+
# model = whisper.load_model(whisper_model)
|
146 |
+
# model = WhisperModel(whisper_model, device="cuda", compute_type="int8_float16")
|
147 |
+
model = WhisperModel(whisper_model, compute_type="int8")
|
148 |
+
time_start = time.time()
|
149 |
+
if (video_file_path == None):
|
150 |
+
raise ValueError("Error no video input")
|
151 |
+
print(video_file_path)
|
152 |
+
|
153 |
+
try:
|
154 |
+
# Read and convert youtube video
|
155 |
+
_, file_ending = os.path.splitext(f'{video_file_path}')
|
156 |
+
print(f'file enging is {file_ending}')
|
157 |
+
audio_file = video_file_path.replace(file_ending, ".wav")
|
158 |
+
print("starting conversion to wav")
|
159 |
+
os.system(f'ffmpeg -i "{video_file_path}" -ar 16000 -ac 1 -c:a pcm_s16le "{audio_file}"')
|
160 |
+
|
161 |
+
# Get duration
|
162 |
+
with contextlib.closing(wave.open(audio_file, 'r')) as f:
|
163 |
+
frames = f.getnframes()
|
164 |
+
rate = f.getframerate()
|
165 |
+
duration = frames / float(rate)
|
166 |
+
print(f"conversion to wav ready, duration of audio file: {duration}")
|
167 |
+
|
168 |
+
# Transcribe audio
|
169 |
+
options = dict(language=selected_source_lang, beam_size=5, best_of=5)
|
170 |
+
transcribe_options = dict(task="transcribe", **options)
|
171 |
+
segments_raw, info = model.transcribe(audio_file, **transcribe_options)
|
172 |
+
|
173 |
+
# Convert back to original openai format
|
174 |
+
segments = []
|
175 |
+
i = 0
|
176 |
+
for segment_chunk in segments_raw:
|
177 |
+
chunk = {}
|
178 |
+
chunk["start"] = segment_chunk.start
|
179 |
+
chunk["end"] = segment_chunk.end
|
180 |
+
chunk["text"] = segment_chunk.text
|
181 |
+
segments.append(chunk)
|
182 |
+
i += 1
|
183 |
+
print("transcribe audio done with fast whisper")
|
184 |
+
except Exception as e:
|
185 |
+
raise RuntimeError("Error converting video to audio")
|
186 |
+
|
187 |
+
try:
|
188 |
+
# Create embedding
|
189 |
+
def segment_embedding(segment):
|
190 |
+
audio = Audio()
|
191 |
+
start = segment["start"]
|
192 |
+
# Whisper overshoots the end timestamp in the last segment
|
193 |
+
end = min(duration, segment["end"])
|
194 |
+
clip = Segment(start, end)
|
195 |
+
waveform, sample_rate = audio.crop(audio_file, clip)
|
196 |
+
return embedding_model(waveform[None])
|
197 |
+
|
198 |
+
embeddings = np.zeros(shape=(len(segments), 192))
|
199 |
+
for i, segment in enumerate(segments):
|
200 |
+
embeddings[i] = segment_embedding(segment)
|
201 |
+
embeddings = np.nan_to_num(embeddings)
|
202 |
+
print(f'Embedding shape: {embeddings.shape}')
|
203 |
+
|
204 |
+
if num_speakers == 0:
|
205 |
+
# Find the best number of speakers
|
206 |
+
score_num_speakers = {}
|
207 |
+
|
208 |
+
for num_speakers in range(2, 10 + 1):
|
209 |
+
clustering = AgglomerativeClustering(num_speakers).fit(embeddings)
|
210 |
+
score = silhouette_score(embeddings, clustering.labels_, metric='euclidean')
|
211 |
+
score_num_speakers[num_speakers] = score
|
212 |
+
best_num_speaker = max(score_num_speakers, key=lambda x: score_num_speakers[x])
|
213 |
+
print(f"The best number of speakers: {best_num_speaker} with {score_num_speakers[best_num_speaker]} score")
|
214 |
+
else:
|
215 |
+
best_num_speaker = num_speakers
|
216 |
+
|
217 |
+
# Assign speaker label
|
218 |
+
clustering = AgglomerativeClustering(best_num_speaker).fit(embeddings)
|
219 |
+
labels = clustering.labels_
|
220 |
+
for i in range(len(segments)):
|
221 |
+
segments[i]["speaker"] = 'SPEAKER ' + str(labels[i] + 1)
|
222 |
+
|
223 |
+
# Make output
|
224 |
+
objects = {
|
225 |
+
'Start': [],
|
226 |
+
'End': [],
|
227 |
+
'Speaker': [],
|
228 |
+
'Text': []
|
229 |
+
}
|
230 |
+
text = ''
|
231 |
+
for (i, segment) in enumerate(segments):
|
232 |
+
if i == 0 or segments[i - 1]["speaker"] != segment["speaker"]:
|
233 |
+
objects['Start'].append(str(convert_time(segment["start"])))
|
234 |
+
objects['Speaker'].append(segment["speaker"])
|
235 |
+
if i != 0:
|
236 |
+
objects['End'].append(str(convert_time(segments[i - 1]["end"])))
|
237 |
+
objects['Text'].append(text)
|
238 |
+
text = ''
|
239 |
+
text += segment["text"] + ' '
|
240 |
+
objects['End'].append(str(convert_time(segments[i - 1]["end"])))
|
241 |
+
objects['Text'].append(text)
|
242 |
+
|
243 |
+
time_end = time.time()
|
244 |
+
time_diff = time_end - time_start
|
245 |
+
memory = psutil.virtual_memory()
|
246 |
+
gpu_utilization, gpu_memory = GPUInfo.gpu_usage()
|
247 |
+
gpu_utilization = gpu_utilization[0] if len(gpu_utilization) > 0 else 0
|
248 |
+
gpu_memory = gpu_memory[0] if len(gpu_memory) > 0 else 0
|
249 |
+
system_info = f"""
|
250 |
+
*Memory: {memory.total / (1024 * 1024 * 1024):.2f}GB, used: {memory.percent}%, available: {memory.available / (1024 * 1024 * 1024):.2f}GB.*
|
251 |
+
*Processing time: {time_diff:.5} seconds.*
|
252 |
+
*GPU Utilization: {gpu_utilization}%, GPU Memory: {gpu_memory}MiB.*
|
253 |
+
"""
|
254 |
+
save_path = "output/transcript_result.csv"
|
255 |
+
df_results = pd.DataFrame(objects)
|
256 |
+
df_results.to_csv(save_path)
|
257 |
+
return df_results, system_info, save_path
|
258 |
+
|
259 |
+
except Exception as e:
|
260 |
+
raise RuntimeError("Error Running inference with local model", e)
|
261 |
+
|
262 |
+
|
263 |
+
# def create_meeting_summary(openai_key, prompt):
|
264 |
+
# openai.api_key = openai_key
|
265 |
+
#
|
266 |
+
# # 文字起こししたテキストを取得
|
267 |
+
# system_template = prompt
|
268 |
+
#
|
269 |
+
# completion = openai.ChatCompletion.create(
|
270 |
+
# model="gpt-3.5-turbo",
|
271 |
+
# messages=[
|
272 |
+
# {"role": "system", "content": system_template},
|
273 |
+
# {"role": "user", "content": transcript_text}
|
274 |
+
# ]
|
275 |
+
# )
|
276 |
+
# summary = completion.choices[0].message.content
|
277 |
+
# return summary
|
278 |
+
|
279 |
+
|
280 |
+
# ---- Gradio Layout -----
|
281 |
+
# Inspiration from https://huggingface.co/spaces/RASMUS/Whisper-youtube-crosslingual-subtitles
|
282 |
+
video_in = gr.Video(label="Video file", mirror_webcam=False)
|
283 |
+
youtube_url_in = gr.Textbox(label="Youtube url", lines=1, interactive=True)
|
284 |
+
df_init = pd.DataFrame(columns=['Start', 'End', 'Speaker', 'Text'])
|
285 |
+
memory = psutil.virtual_memory()
|
286 |
+
selected_source_lang = gr.Dropdown(choices=source_language_list, type="value", value="ja",
|
287 |
+
label="Spoken language in video", interactive=True)
|
288 |
+
selected_whisper_model = gr.Dropdown(choices=whisper_models, type="value", value="base", label="Selected Whisper model",
|
289 |
+
interactive=True)
|
290 |
+
number_speakers = gr.Number(precision=0, value=0,
|
291 |
+
label="Input number of speakers for better results. If value=0, model will automatic find the best number of speakers",
|
292 |
+
interactive=True)
|
293 |
+
system_info = gr.Markdown(
|
294 |
+
f"*Memory: {memory.total / (1024 * 1024 * 1024):.2f}GB, used: {memory.percent}%, available: {memory.available / (1024 * 1024 * 1024):.2f}GB*")
|
295 |
+
download_transcript = gr.File(label="Download transcript")
|
296 |
+
transcription_df = gr.DataFrame(value=df_init, label="Transcription dataframe", row_count=(0, "dynamic"), max_rows=10,
|
297 |
+
wrap=True, overflow_row_behaviour='paginate')
|
298 |
+
title = "Whisper speaker diarization"
|
299 |
+
demo = gr.Blocks(title=title)
|
300 |
+
demo.encrypt = False
|
301 |
+
|
302 |
+
with demo:
|
303 |
+
with gr.Tab("Whisper speaker diarization"):
|
304 |
+
gr.Markdown('''
|
305 |
+
<div>
|
306 |
+
<h1 style='text-align: center'>Whisper speaker diarization</h1>
|
307 |
+
This space uses Whisper models from <a href='https://github.com/openai/whisper' target='_blank'><b>OpenAI</b></a> with <a href='https://github.com/guillaumekln/faster-whisper' target='_blank'><b>CTranslate2</b></a> which is a fast inference engine for Transformer models to recognize the speech (4 times faster than original openai model with same accuracy)
|
308 |
+
and ECAPA-TDNN model from <a href='https://github.com/speechbrain/speechbrain' target='_blank'><b>SpeechBrain</b></a> to encode and clasify speakers
|
309 |
+
</div>
|
310 |
+
''')
|
311 |
+
|
312 |
+
with gr.Row():
|
313 |
+
gr.Markdown('''
|
314 |
+
### Transcribe youtube link using OpenAI Whisper
|
315 |
+
##### 1. Using Open AI's Whisper model to seperate audio into segments and generate transcripts.
|
316 |
+
##### 2. Generating speaker embeddings for each segments.
|
317 |
+
##### 3. Applying agglomerative clustering on the embeddings to identify the speaker for each segment.
|
318 |
+
''')
|
319 |
+
|
320 |
+
with gr.Row():
|
321 |
+
gr.Markdown('''
|
322 |
+
### You can test by following examples:
|
323 |
+
''')
|
324 |
+
examples = gr.Examples(examples=
|
325 |
+
["https://www.youtube.com/watch?v=j7BfEzAFuYc&t=32s",
|
326 |
+
"https://www.youtube.com/watch?v=-UX0X45sYe4",
|
327 |
+
"https://www.youtube.com/watch?v=7minSgqi-Gw"],
|
328 |
+
label="Examples", inputs=[youtube_url_in])
|
329 |
+
|
330 |
+
with gr.Row():
|
331 |
+
with gr.Column():
|
332 |
+
youtube_url_in.render()
|
333 |
+
download_youtube_btn = gr.Button("Download Youtube video")
|
334 |
+
download_youtube_btn.click(get_youtube, [youtube_url_in], [
|
335 |
+
video_in])
|
336 |
+
print(video_in)
|
337 |
+
|
338 |
+
with gr.Row():
|
339 |
+
with gr.Column():
|
340 |
+
video_in.render()
|
341 |
+
with gr.Column():
|
342 |
+
gr.Markdown('''
|
343 |
+
##### Here you can start the transcription process.
|
344 |
+
##### Please select the source language for transcription.
|
345 |
+
##### You can select a range of assumed numbers of speakers.
|
346 |
+
''')
|
347 |
+
selected_source_lang.render()
|
348 |
+
selected_whisper_model.render()
|
349 |
+
number_speakers.render()
|
350 |
+
transcribe_btn = gr.Button("Transcribe audio and diarization")
|
351 |
+
transcribe_btn.click(speech_to_text,
|
352 |
+
[video_in, selected_source_lang, selected_whisper_model, number_speakers],
|
353 |
+
[transcription_df, system_info, download_transcript]
|
354 |
+
)
|
355 |
+
|
356 |
+
with gr.Row():
|
357 |
+
gr.Markdown('''
|
358 |
+
##### Here you will get transcription output
|
359 |
+
##### ''')
|
360 |
+
|
361 |
+
with gr.Row():
|
362 |
+
with gr.Column():
|
363 |
+
download_transcript.render()
|
364 |
+
transcription_df.render()
|
365 |
+
# system_info.render()
|
366 |
+
# gr.Markdown(
|
367 |
+
# '''<center><img src='https://visitor-badge.glitch.me/badge?page_id=WhisperDiarizationSpeakers' alt='visitor badge'><a href="https://opensource.org/licenses/Apache-2.0"><img src='https://img.shields.io/badge/License-Apache_2.0-blue.svg' alt='License: Apache 2.0'></center>''')
|
368 |
+
|
369 |
+
# with gr.Row():
|
370 |
+
# with gr.Column():
|
371 |
+
# gr.Textbox(lines=1, label="openai_key", type="password")
|
372 |
+
# gr.TextArea(label="prompt", value="""会議の文字起こしが渡されます。
|
373 |
+
#
|
374 |
+
# この会議のサマリーをMarkdown形式で作成してください。サマリーは、以下のような形式で書いてください。
|
375 |
+
# - 会議の目的
|
376 |
+
# - 会議の内容
|
377 |
+
# - 会議の結果""")
|
378 |
+
# gr.Textbox(label="transcription_summary")
|
379 |
+
|
380 |
|
381 |
+
demo.launch(debug=True)
|
requirements.txt
CHANGED
@@ -1,5 +1,3 @@
|
|
1 |
-
openai==0.27.2
|
2 |
-
pydub==0.25.1
|
3 |
git+https://github.com/huggingface/transformers
|
4 |
git+https://github.com/pyannote/pyannote-audio
|
5 |
git+https://github.com/openai/whisper.git
|
@@ -21,4 +19,5 @@ psutil==5.9.2
|
|
21 |
requests
|
22 |
gpuinfo
|
23 |
faster-whisper
|
24 |
-
yt-dlp
|
|
|
|
|
|
|
|
1 |
git+https://github.com/huggingface/transformers
|
2 |
git+https://github.com/pyannote/pyannote-audio
|
3 |
git+https://github.com/openai/whisper.git
|
|
|
19 |
requests
|
20 |
gpuinfo
|
21 |
faster-whisper
|
22 |
+
yt-dlp
|
23 |
+
openai==0.27.2
|