Upload analysis_post_processor.py
Browse files
src/analysis/analysis_post_processor.py
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import google.generativeai as genai
|
3 |
+
from pathlib import Path
|
4 |
+
import logging
|
5 |
+
|
6 |
+
logging.basicConfig(level=logging.INFO)
|
7 |
+
logger = logging.getLogger(__name__)
|
8 |
+
|
9 |
+
class AnalysisPostProcessor:
|
10 |
+
def __init__(self):
|
11 |
+
api_key = os.getenv("GOOGLE_API_KEY")
|
12 |
+
if not api_key:
|
13 |
+
raise ValueError("GOOGLE_API_KEY not found")
|
14 |
+
|
15 |
+
genai.configure(api_key=api_key)
|
16 |
+
self.model = genai.GenerativeModel('gemini-pro')
|
17 |
+
|
18 |
+
def read_sections(self, filepath: str) -> dict:
|
19 |
+
"""Read and separate the analysis into sections"""
|
20 |
+
with open(filepath, 'r') as f:
|
21 |
+
content = f.read()
|
22 |
+
|
23 |
+
sections = {}
|
24 |
+
current_section = None
|
25 |
+
current_content = []
|
26 |
+
|
27 |
+
for line in content.split('\n'):
|
28 |
+
if line.startswith('### ') and line.endswith(' ###'):
|
29 |
+
if current_section:
|
30 |
+
sections[current_section] = '\n'.join(current_content)
|
31 |
+
current_section = line.strip('#').strip()
|
32 |
+
current_content = []
|
33 |
+
else:
|
34 |
+
current_content.append(line)
|
35 |
+
|
36 |
+
if current_section:
|
37 |
+
sections[current_section] = '\n'.join(current_content)
|
38 |
+
|
39 |
+
return sections
|
40 |
+
|
41 |
+
def clean_section(self, title: str, content: str) -> str:
|
42 |
+
"""Clean individual section using Gemini"""
|
43 |
+
prompt = f"""You are processing a section of screenplay analysis titled "{title}".
|
44 |
+
The original analysis was generated by analyzing chunks of the screenplay,
|
45 |
+
which may have led to some redundancy and discontinuity.
|
46 |
+
|
47 |
+
Your task:
|
48 |
+
1. Remove any redundant observations
|
49 |
+
2. Stitch together related insights that may be separated
|
50 |
+
3. Ensure the analysis flows naturally from beginning to end
|
51 |
+
4. Preserve ALL unique insights and specific examples
|
52 |
+
5. Maintain the analytical depth while making it more coherent
|
53 |
+
|
54 |
+
Original {title} section:
|
55 |
+
{content}
|
56 |
+
|
57 |
+
Provide the cleaned and coherent version maintaining the same analytical depth."""
|
58 |
+
|
59 |
+
try:
|
60 |
+
response = self.model.generate_content(prompt)
|
61 |
+
return response.text
|
62 |
+
except Exception as e:
|
63 |
+
logger.error(f"Error cleaning {title}: {str(e)}")
|
64 |
+
return content
|
65 |
+
|
66 |
+
def process_analysis(self, input_path: str, output_path: str):
|
67 |
+
"""Process the entire analysis file"""
|
68 |
+
try:
|
69 |
+
# Read and separate sections
|
70 |
+
sections = self.read_sections(input_path)
|
71 |
+
|
72 |
+
# Process each section
|
73 |
+
cleaned_sections = {}
|
74 |
+
for title, content in sections.items():
|
75 |
+
logger.info(f"Processing {title}")
|
76 |
+
cleaned_sections[title] = self.clean_section(title, content)
|
77 |
+
|
78 |
+
# Combine sections
|
79 |
+
final_analysis = "SCREENPLAY CREATIVE ANALYSIS\n\n"
|
80 |
+
for title, content in cleaned_sections.items():
|
81 |
+
final_analysis += f"### {title} ###\n\n{content}\n\n"
|
82 |
+
|
83 |
+
# Save result
|
84 |
+
with open(output_path, 'w') as f:
|
85 |
+
f.write(final_analysis)
|
86 |
+
|
87 |
+
logger.info(f"Cleaned analysis saved to: {output_path}")
|
88 |
+
return True
|
89 |
+
|
90 |
+
except Exception as e:
|
91 |
+
logger.error(f"Error in post-processing: {str(e)}")
|
92 |
+
return False
|
93 |
+
|
94 |
+
def main():
|
95 |
+
processor = AnalysisPostProcessor()
|
96 |
+
input_file = "path/to/creative_analysis.txt"
|
97 |
+
output_file = "path/to/cleaned_creative_analysis.txt"
|
98 |
+
processor.process_analysis(input_file, output_file)
|
99 |
+
|
100 |
+
if __name__ == "__main__":
|
101 |
+
main()
|