Update src/analysis/coverage_generator.py
Browse files
src/analysis/coverage_generator.py
CHANGED
|
@@ -0,0 +1,214 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import google.generativeai as genai
|
| 3 |
+
from pathlib import Path
|
| 4 |
+
from tqdm import tqdm
|
| 5 |
+
import logging
|
| 6 |
+
|
| 7 |
+
# Set up logging
|
| 8 |
+
logging.basicConfig(level=logging.DEBUG,
|
| 9 |
+
format='%(asctime)s - %(levelname)s - %(message)s')
|
| 10 |
+
logger = logging.getLogger(__name__)
|
| 11 |
+
|
| 12 |
+
class CoverageGenerator:
|
| 13 |
+
def __init__(self):
|
| 14 |
+
# Initialize Gemini
|
| 15 |
+
api_key = os.getenv("GOOGLE_API_KEY")
|
| 16 |
+
if not api_key:
|
| 17 |
+
raise ValueError("GOOGLE_API_KEY not found")
|
| 18 |
+
|
| 19 |
+
genai.configure(api_key=api_key)
|
| 20 |
+
self.model = genai.GenerativeModel('gemini-pro')
|
| 21 |
+
|
| 22 |
+
# Add token tracking
|
| 23 |
+
self.token_usage = {
|
| 24 |
+
'prompt_tokens': 0,
|
| 25 |
+
'completion_tokens': 0,
|
| 26 |
+
'total_tokens': 0
|
| 27 |
+
}
|
| 28 |
+
|
| 29 |
+
# Set chunk size (in estimated tokens)
|
| 30 |
+
self.chunk_size = 8000 # Conservative size to avoid issues
|
| 31 |
+
|
| 32 |
+
def count_tokens(self, text: str) -> int:
|
| 33 |
+
"""Estimate token count using simple word-based estimation"""
|
| 34 |
+
words = text.split()
|
| 35 |
+
return int(len(words) * 1.3)
|
| 36 |
+
|
| 37 |
+
def chunk_screenplay(self, text: str) -> list:
|
| 38 |
+
"""Split screenplay into chunks with overlap for context"""
|
| 39 |
+
logger.info("Chunking screenplay...")
|
| 40 |
+
|
| 41 |
+
# Split into scenes (looking for standard screenplay headers)
|
| 42 |
+
scenes = text.split("\n\n")
|
| 43 |
+
|
| 44 |
+
chunks = []
|
| 45 |
+
current_chunk = []
|
| 46 |
+
current_size = 0
|
| 47 |
+
overlap_scenes = 2 # Number of scenes to overlap
|
| 48 |
+
|
| 49 |
+
for i, scene in enumerate(scenes):
|
| 50 |
+
scene_size = self.count_tokens(scene)
|
| 51 |
+
|
| 52 |
+
if current_size + scene_size > self.chunk_size and current_chunk:
|
| 53 |
+
# Get overlap scenes from the end of current chunk
|
| 54 |
+
overlap = current_chunk[-overlap_scenes:] if len(current_chunk) > overlap_scenes else current_chunk
|
| 55 |
+
|
| 56 |
+
# Join current chunk and add to chunks
|
| 57 |
+
chunks.append("\n\n".join(current_chunk))
|
| 58 |
+
|
| 59 |
+
# Start new chunk with overlap for context
|
| 60 |
+
current_chunk = overlap + [scene]
|
| 61 |
+
current_size = sum(self.count_tokens(s) for s in current_chunk)
|
| 62 |
+
else:
|
| 63 |
+
current_chunk.append(scene)
|
| 64 |
+
current_size += scene_size
|
| 65 |
+
|
| 66 |
+
# Add the last chunk if it exists
|
| 67 |
+
if current_chunk:
|
| 68 |
+
chunks.append("\n\n".join(current_chunk))
|
| 69 |
+
|
| 70 |
+
logger.info(f"Split screenplay into {len(chunks)} chunks with context overlap")
|
| 71 |
+
return chunks
|
| 72 |
+
|
| 73 |
+
def read_screenplay(self, filepath: Path) -> str:
|
| 74 |
+
"""Read the cleaned screenplay file"""
|
| 75 |
+
try:
|
| 76 |
+
logger.info(f"Reading screenplay from: {filepath}")
|
| 77 |
+
with open(filepath, 'r', encoding='utf-8') as file:
|
| 78 |
+
text = file.read()
|
| 79 |
+
tokens = self.count_tokens(text)
|
| 80 |
+
logger.info(f"Successfully read screenplay. Length: {tokens} tokens (estimated)")
|
| 81 |
+
return text
|
| 82 |
+
except Exception as e:
|
| 83 |
+
logger.error(f"Error reading screenplay: {e}")
|
| 84 |
+
logger.error(f"Tried to read from: {filepath}")
|
| 85 |
+
return None
|
| 86 |
+
|
| 87 |
+
def generate_synopsis(self, chunk: str, chunk_num: int = 1, total_chunks: int = 1) -> str:
|
| 88 |
+
"""Generate synopsis for a single chunk"""
|
| 89 |
+
prompt = f"""As an experienced script analyst, analyze this section ({chunk_num}/{total_chunks}) of the screenplay.
|
| 90 |
+
|
| 91 |
+
Important: This section may overlap with others to maintain context. Focus on:
|
| 92 |
+
- Key plot developments and their implications for the larger story
|
| 93 |
+
- Character appearances and development
|
| 94 |
+
- How this section connects to the ongoing narrative
|
| 95 |
+
- Major themes or motifs that emerge
|
| 96 |
+
|
| 97 |
+
Provide a summary that captures both the specific events and their significance to the larger narrative.
|
| 98 |
+
|
| 99 |
+
Screenplay section:
|
| 100 |
+
{chunk}"""
|
| 101 |
+
|
| 102 |
+
try:
|
| 103 |
+
prompt_tokens = self.count_tokens(prompt)
|
| 104 |
+
logger.debug(f"Chunk {chunk_num} prompt length: {prompt_tokens} tokens")
|
| 105 |
+
|
| 106 |
+
with tqdm(total=1, desc=f"Processing chunk {chunk_num}/{total_chunks}") as pbar:
|
| 107 |
+
response = self.model.generate_content(prompt)
|
| 108 |
+
completion_tokens = self.count_tokens(response.text)
|
| 109 |
+
pbar.update(1)
|
| 110 |
+
|
| 111 |
+
self.token_usage['prompt_tokens'] += prompt_tokens
|
| 112 |
+
self.token_usage['completion_tokens'] += completion_tokens
|
| 113 |
+
self.token_usage['total_tokens'] += (prompt_tokens + completion_tokens)
|
| 114 |
+
|
| 115 |
+
return response.text
|
| 116 |
+
except Exception as e:
|
| 117 |
+
logger.error(f"Error processing chunk {chunk_num}: {str(e)}")
|
| 118 |
+
logger.error("Full error details:", exc_info=True)
|
| 119 |
+
return None
|
| 120 |
+
|
| 121 |
+
def generate_final_synopsis(self, chunk_synopses: list) -> str:
|
| 122 |
+
"""Combine chunk synopses into a final, coherent synopsis with strong narrative focus"""
|
| 123 |
+
combined_text = "\n\n".join([f"Section {i+1}:\n{synopsis}"
|
| 124 |
+
for i, synopsis in enumerate(chunk_synopses)])
|
| 125 |
+
|
| 126 |
+
prompt = f"""As an experienced script analyst, synthesize these section summaries into a comprehensive,
|
| 127 |
+
narratively cohesive synopsis of the entire screenplay.
|
| 128 |
+
|
| 129 |
+
You should have distinct sections on:
|
| 130 |
+
1. The complete narrative arc from beginning to end
|
| 131 |
+
2. Character development across the full story
|
| 132 |
+
3. Major themes and how they evolve
|
| 133 |
+
4. Key turning points and their impact
|
| 134 |
+
5. The core conflict and its resolution
|
| 135 |
+
|
| 136 |
+
Ensure the synopsis flows naturally and captures the full story without revealing the seams between sections.
|
| 137 |
+
|
| 138 |
+
Section summaries:
|
| 139 |
+
{combined_text}"""
|
| 140 |
+
|
| 141 |
+
try:
|
| 142 |
+
logger.info("Generating final synopsis")
|
| 143 |
+
with tqdm(total=1, desc="Creating final synopsis") as pbar:
|
| 144 |
+
response = self.model.generate_content(prompt)
|
| 145 |
+
pbar.update(1)
|
| 146 |
+
return response.text
|
| 147 |
+
except Exception as e:
|
| 148 |
+
logger.error(f"Error generating final synopsis: {str(e)}")
|
| 149 |
+
return None
|
| 150 |
+
|
| 151 |
+
def generate_coverage(self, screenplay_path: Path) -> bool:
|
| 152 |
+
"""Main method to generate full coverage document"""
|
| 153 |
+
logger.info("Starting coverage generation")
|
| 154 |
+
|
| 155 |
+
self.token_usage = {
|
| 156 |
+
'prompt_tokens': 0,
|
| 157 |
+
'completion_tokens': 0,
|
| 158 |
+
'total_tokens': 0
|
| 159 |
+
}
|
| 160 |
+
|
| 161 |
+
with tqdm(total=4, desc="Generating coverage") as pbar:
|
| 162 |
+
# Read screenplay
|
| 163 |
+
screenplay_text = self.read_screenplay(screenplay_path)
|
| 164 |
+
if not screenplay_text:
|
| 165 |
+
return False
|
| 166 |
+
pbar.update(1)
|
| 167 |
+
|
| 168 |
+
# Split into chunks
|
| 169 |
+
chunks = self.chunk_screenplay(screenplay_text)
|
| 170 |
+
pbar.update(1)
|
| 171 |
+
|
| 172 |
+
# Process each chunk
|
| 173 |
+
chunk_synopses = []
|
| 174 |
+
for i, chunk in enumerate(chunks, 1):
|
| 175 |
+
synopsis = self.generate_synopsis(chunk, i, len(chunks))
|
| 176 |
+
if synopsis:
|
| 177 |
+
chunk_synopses.append(synopsis)
|
| 178 |
+
else:
|
| 179 |
+
logger.error(f"Failed to process chunk {i}")
|
| 180 |
+
return False
|
| 181 |
+
pbar.update(1)
|
| 182 |
+
|
| 183 |
+
# Generate final synopsis
|
| 184 |
+
final_synopsis = self.generate_final_synopsis(chunk_synopses)
|
| 185 |
+
if not final_synopsis:
|
| 186 |
+
return False
|
| 187 |
+
|
| 188 |
+
# Save coverage
|
| 189 |
+
output_dir = screenplay_path.parent
|
| 190 |
+
output_path = output_dir / "coverage.txt"
|
| 191 |
+
|
| 192 |
+
try:
|
| 193 |
+
with open(output_path, 'w', encoding='utf-8') as f:
|
| 194 |
+
f.write("SCREENPLAY COVERAGE\n\n")
|
| 195 |
+
f.write("### SYNOPSIS ###\n\n")
|
| 196 |
+
f.write(final_synopsis)
|
| 197 |
+
|
| 198 |
+
# Add token usage summary
|
| 199 |
+
f.write("\n\n### TOKEN USAGE SUMMARY ###\n")
|
| 200 |
+
f.write(f"Prompt Tokens: {self.token_usage['prompt_tokens']}\n")
|
| 201 |
+
f.write(f"Completion Tokens: {self.token_usage['completion_tokens']}\n")
|
| 202 |
+
f.write(f"Total Tokens: {self.token_usage['total_tokens']}\n")
|
| 203 |
+
|
| 204 |
+
logger.info("\nFinal Token Usage Summary:")
|
| 205 |
+
logger.info(f"Prompt Tokens: {self.token_usage['prompt_tokens']}")
|
| 206 |
+
logger.info(f"Completion Tokens: {self.token_usage['completion_tokens']}")
|
| 207 |
+
logger.info(f"Total Tokens: {self.token_usage['total_tokens']}")
|
| 208 |
+
|
| 209 |
+
pbar.update(1)
|
| 210 |
+
return True
|
| 211 |
+
except Exception as e:
|
| 212 |
+
logger.error(f"Error saving coverage: {str(e)}")
|
| 213 |
+
logger.error("Full error details:", exc_info=True)
|
| 214 |
+
return False
|