Update src/analysis/coverage_generator.py
Browse files
src/analysis/coverage_generator.py
CHANGED
@@ -0,0 +1,214 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import google.generativeai as genai
|
3 |
+
from pathlib import Path
|
4 |
+
from tqdm import tqdm
|
5 |
+
import logging
|
6 |
+
|
7 |
+
# Set up logging
|
8 |
+
logging.basicConfig(level=logging.DEBUG,
|
9 |
+
format='%(asctime)s - %(levelname)s - %(message)s')
|
10 |
+
logger = logging.getLogger(__name__)
|
11 |
+
|
12 |
+
class CoverageGenerator:
|
13 |
+
def __init__(self):
|
14 |
+
# Initialize Gemini
|
15 |
+
api_key = os.getenv("GOOGLE_API_KEY")
|
16 |
+
if not api_key:
|
17 |
+
raise ValueError("GOOGLE_API_KEY not found")
|
18 |
+
|
19 |
+
genai.configure(api_key=api_key)
|
20 |
+
self.model = genai.GenerativeModel('gemini-pro')
|
21 |
+
|
22 |
+
# Add token tracking
|
23 |
+
self.token_usage = {
|
24 |
+
'prompt_tokens': 0,
|
25 |
+
'completion_tokens': 0,
|
26 |
+
'total_tokens': 0
|
27 |
+
}
|
28 |
+
|
29 |
+
# Set chunk size (in estimated tokens)
|
30 |
+
self.chunk_size = 8000 # Conservative size to avoid issues
|
31 |
+
|
32 |
+
def count_tokens(self, text: str) -> int:
|
33 |
+
"""Estimate token count using simple word-based estimation"""
|
34 |
+
words = text.split()
|
35 |
+
return int(len(words) * 1.3)
|
36 |
+
|
37 |
+
def chunk_screenplay(self, text: str) -> list:
|
38 |
+
"""Split screenplay into chunks with overlap for context"""
|
39 |
+
logger.info("Chunking screenplay...")
|
40 |
+
|
41 |
+
# Split into scenes (looking for standard screenplay headers)
|
42 |
+
scenes = text.split("\n\n")
|
43 |
+
|
44 |
+
chunks = []
|
45 |
+
current_chunk = []
|
46 |
+
current_size = 0
|
47 |
+
overlap_scenes = 2 # Number of scenes to overlap
|
48 |
+
|
49 |
+
for i, scene in enumerate(scenes):
|
50 |
+
scene_size = self.count_tokens(scene)
|
51 |
+
|
52 |
+
if current_size + scene_size > self.chunk_size and current_chunk:
|
53 |
+
# Get overlap scenes from the end of current chunk
|
54 |
+
overlap = current_chunk[-overlap_scenes:] if len(current_chunk) > overlap_scenes else current_chunk
|
55 |
+
|
56 |
+
# Join current chunk and add to chunks
|
57 |
+
chunks.append("\n\n".join(current_chunk))
|
58 |
+
|
59 |
+
# Start new chunk with overlap for context
|
60 |
+
current_chunk = overlap + [scene]
|
61 |
+
current_size = sum(self.count_tokens(s) for s in current_chunk)
|
62 |
+
else:
|
63 |
+
current_chunk.append(scene)
|
64 |
+
current_size += scene_size
|
65 |
+
|
66 |
+
# Add the last chunk if it exists
|
67 |
+
if current_chunk:
|
68 |
+
chunks.append("\n\n".join(current_chunk))
|
69 |
+
|
70 |
+
logger.info(f"Split screenplay into {len(chunks)} chunks with context overlap")
|
71 |
+
return chunks
|
72 |
+
|
73 |
+
def read_screenplay(self, filepath: Path) -> str:
|
74 |
+
"""Read the cleaned screenplay file"""
|
75 |
+
try:
|
76 |
+
logger.info(f"Reading screenplay from: {filepath}")
|
77 |
+
with open(filepath, 'r', encoding='utf-8') as file:
|
78 |
+
text = file.read()
|
79 |
+
tokens = self.count_tokens(text)
|
80 |
+
logger.info(f"Successfully read screenplay. Length: {tokens} tokens (estimated)")
|
81 |
+
return text
|
82 |
+
except Exception as e:
|
83 |
+
logger.error(f"Error reading screenplay: {e}")
|
84 |
+
logger.error(f"Tried to read from: {filepath}")
|
85 |
+
return None
|
86 |
+
|
87 |
+
def generate_synopsis(self, chunk: str, chunk_num: int = 1, total_chunks: int = 1) -> str:
|
88 |
+
"""Generate synopsis for a single chunk"""
|
89 |
+
prompt = f"""As an experienced script analyst, analyze this section ({chunk_num}/{total_chunks}) of the screenplay.
|
90 |
+
|
91 |
+
Important: This section may overlap with others to maintain context. Focus on:
|
92 |
+
- Key plot developments and their implications for the larger story
|
93 |
+
- Character appearances and development
|
94 |
+
- How this section connects to the ongoing narrative
|
95 |
+
- Major themes or motifs that emerge
|
96 |
+
|
97 |
+
Provide a summary that captures both the specific events and their significance to the larger narrative.
|
98 |
+
|
99 |
+
Screenplay section:
|
100 |
+
{chunk}"""
|
101 |
+
|
102 |
+
try:
|
103 |
+
prompt_tokens = self.count_tokens(prompt)
|
104 |
+
logger.debug(f"Chunk {chunk_num} prompt length: {prompt_tokens} tokens")
|
105 |
+
|
106 |
+
with tqdm(total=1, desc=f"Processing chunk {chunk_num}/{total_chunks}") as pbar:
|
107 |
+
response = self.model.generate_content(prompt)
|
108 |
+
completion_tokens = self.count_tokens(response.text)
|
109 |
+
pbar.update(1)
|
110 |
+
|
111 |
+
self.token_usage['prompt_tokens'] += prompt_tokens
|
112 |
+
self.token_usage['completion_tokens'] += completion_tokens
|
113 |
+
self.token_usage['total_tokens'] += (prompt_tokens + completion_tokens)
|
114 |
+
|
115 |
+
return response.text
|
116 |
+
except Exception as e:
|
117 |
+
logger.error(f"Error processing chunk {chunk_num}: {str(e)}")
|
118 |
+
logger.error("Full error details:", exc_info=True)
|
119 |
+
return None
|
120 |
+
|
121 |
+
def generate_final_synopsis(self, chunk_synopses: list) -> str:
|
122 |
+
"""Combine chunk synopses into a final, coherent synopsis with strong narrative focus"""
|
123 |
+
combined_text = "\n\n".join([f"Section {i+1}:\n{synopsis}"
|
124 |
+
for i, synopsis in enumerate(chunk_synopses)])
|
125 |
+
|
126 |
+
prompt = f"""As an experienced script analyst, synthesize these section summaries into a comprehensive,
|
127 |
+
narratively cohesive synopsis of the entire screenplay.
|
128 |
+
|
129 |
+
You should have distinct sections on:
|
130 |
+
1. The complete narrative arc from beginning to end
|
131 |
+
2. Character development across the full story
|
132 |
+
3. Major themes and how they evolve
|
133 |
+
4. Key turning points and their impact
|
134 |
+
5. The core conflict and its resolution
|
135 |
+
|
136 |
+
Ensure the synopsis flows naturally and captures the full story without revealing the seams between sections.
|
137 |
+
|
138 |
+
Section summaries:
|
139 |
+
{combined_text}"""
|
140 |
+
|
141 |
+
try:
|
142 |
+
logger.info("Generating final synopsis")
|
143 |
+
with tqdm(total=1, desc="Creating final synopsis") as pbar:
|
144 |
+
response = self.model.generate_content(prompt)
|
145 |
+
pbar.update(1)
|
146 |
+
return response.text
|
147 |
+
except Exception as e:
|
148 |
+
logger.error(f"Error generating final synopsis: {str(e)}")
|
149 |
+
return None
|
150 |
+
|
151 |
+
def generate_coverage(self, screenplay_path: Path) -> bool:
|
152 |
+
"""Main method to generate full coverage document"""
|
153 |
+
logger.info("Starting coverage generation")
|
154 |
+
|
155 |
+
self.token_usage = {
|
156 |
+
'prompt_tokens': 0,
|
157 |
+
'completion_tokens': 0,
|
158 |
+
'total_tokens': 0
|
159 |
+
}
|
160 |
+
|
161 |
+
with tqdm(total=4, desc="Generating coverage") as pbar:
|
162 |
+
# Read screenplay
|
163 |
+
screenplay_text = self.read_screenplay(screenplay_path)
|
164 |
+
if not screenplay_text:
|
165 |
+
return False
|
166 |
+
pbar.update(1)
|
167 |
+
|
168 |
+
# Split into chunks
|
169 |
+
chunks = self.chunk_screenplay(screenplay_text)
|
170 |
+
pbar.update(1)
|
171 |
+
|
172 |
+
# Process each chunk
|
173 |
+
chunk_synopses = []
|
174 |
+
for i, chunk in enumerate(chunks, 1):
|
175 |
+
synopsis = self.generate_synopsis(chunk, i, len(chunks))
|
176 |
+
if synopsis:
|
177 |
+
chunk_synopses.append(synopsis)
|
178 |
+
else:
|
179 |
+
logger.error(f"Failed to process chunk {i}")
|
180 |
+
return False
|
181 |
+
pbar.update(1)
|
182 |
+
|
183 |
+
# Generate final synopsis
|
184 |
+
final_synopsis = self.generate_final_synopsis(chunk_synopses)
|
185 |
+
if not final_synopsis:
|
186 |
+
return False
|
187 |
+
|
188 |
+
# Save coverage
|
189 |
+
output_dir = screenplay_path.parent
|
190 |
+
output_path = output_dir / "coverage.txt"
|
191 |
+
|
192 |
+
try:
|
193 |
+
with open(output_path, 'w', encoding='utf-8') as f:
|
194 |
+
f.write("SCREENPLAY COVERAGE\n\n")
|
195 |
+
f.write("### SYNOPSIS ###\n\n")
|
196 |
+
f.write(final_synopsis)
|
197 |
+
|
198 |
+
# Add token usage summary
|
199 |
+
f.write("\n\n### TOKEN USAGE SUMMARY ###\n")
|
200 |
+
f.write(f"Prompt Tokens: {self.token_usage['prompt_tokens']}\n")
|
201 |
+
f.write(f"Completion Tokens: {self.token_usage['completion_tokens']}\n")
|
202 |
+
f.write(f"Total Tokens: {self.token_usage['total_tokens']}\n")
|
203 |
+
|
204 |
+
logger.info("\nFinal Token Usage Summary:")
|
205 |
+
logger.info(f"Prompt Tokens: {self.token_usage['prompt_tokens']}")
|
206 |
+
logger.info(f"Completion Tokens: {self.token_usage['completion_tokens']}")
|
207 |
+
logger.info(f"Total Tokens: {self.token_usage['total_tokens']}")
|
208 |
+
|
209 |
+
pbar.update(1)
|
210 |
+
return True
|
211 |
+
except Exception as e:
|
212 |
+
logger.error(f"Error saving coverage: {str(e)}")
|
213 |
+
logger.error("Full error details:", exc_info=True)
|
214 |
+
return False
|