Spaces:
Runtime error
Runtime error
Disable api
Browse files- app_allenai.py +4 -1
- app_experimental.py +82 -96
- app_marco_o1.py +4 -1
app_allenai.py
CHANGED
@@ -5,5 +5,8 @@ import transformers_gradio
|
|
5 |
demo = gr.load(name="allenai/Llama-3.1-Tulu-3-8B", src=transformers_gradio.registry)
|
6 |
demo.fn = spaces.GPU()(demo.fn)
|
7 |
|
|
|
|
|
|
|
8 |
if __name__ == "__main__":
|
9 |
-
demo.launch()
|
|
|
5 |
demo = gr.load(name="allenai/Llama-3.1-Tulu-3-8B", src=transformers_gradio.registry)
|
6 |
demo.fn = spaces.GPU()(demo.fn)
|
7 |
|
8 |
+
for fn in demo.fns.values():
|
9 |
+
fn.api_name = False
|
10 |
+
|
11 |
if __name__ == "__main__":
|
12 |
+
demo.launch()
|
app_experimental.py
CHANGED
@@ -1,12 +1,14 @@
|
|
1 |
import os
|
2 |
-
import gradio as gr
|
3 |
-
from typing import List, Dict, Callable
|
4 |
import random
|
|
|
|
|
5 |
import google.generativeai as genai
|
6 |
-
|
7 |
import openai
|
|
|
8 |
from openai import OpenAI # Add explicit OpenAI import
|
9 |
|
|
|
10 |
def get_all_models():
|
11 |
"""Get all available models from the registries."""
|
12 |
return [
|
@@ -28,8 +30,10 @@ def get_all_models():
|
|
28 |
"Hyperbolic: meta-llama/Meta-Llama-3.1-405B-Instruct",
|
29 |
]
|
30 |
|
|
|
31 |
def generate_discussion_prompt(original_question: str, previous_responses: List[str]) -> str:
|
32 |
-
"""Generate a prompt for models to discuss and build upon previous
|
|
|
33 |
prompt = f"""You are participating in a multi-AI discussion about this question: "{original_question}"
|
34 |
|
35 |
Previous responses from other AI models:
|
@@ -44,6 +48,7 @@ Please provide your perspective while:
|
|
44 |
Keep your response focused and concise (max 3-4 paragraphs)."""
|
45 |
return prompt
|
46 |
|
|
|
47 |
def generate_consensus_prompt(original_question: str, discussion_history: List[str]) -> str:
|
48 |
"""Generate a prompt for final consensus building."""
|
49 |
return f"""Review this multi-AI discussion about: "{original_question}"
|
@@ -59,67 +64,64 @@ As a final synthesizer, please:
|
|
59 |
|
60 |
Keep the final consensus concise but complete."""
|
61 |
|
62 |
-
|
|
|
63 |
import openai
|
|
|
64 |
client = openai.OpenAI(api_key=api_key)
|
65 |
-
response = client.chat.completions.create(
|
66 |
-
model=model,
|
67 |
-
messages=messages
|
68 |
-
)
|
69 |
return response.choices[0].message.content
|
70 |
|
71 |
-
|
|
|
72 |
"""Chat with Anthropic's Claude model."""
|
73 |
client = Anthropic(api_key=api_key)
|
74 |
-
response = client.messages.create(
|
75 |
-
model="claude-3-sonnet-20240229",
|
76 |
-
messages=messages,
|
77 |
-
max_tokens=1024
|
78 |
-
)
|
79 |
return response.content[0].text
|
80 |
|
81 |
-
|
|
|
82 |
"""Chat with Gemini Pro model."""
|
83 |
genai.configure(api_key=api_key)
|
84 |
-
model = genai.GenerativeModel(
|
85 |
-
|
86 |
# Convert messages to Gemini format
|
87 |
gemini_messages = []
|
88 |
for msg in messages:
|
89 |
role = "user" if msg["role"] == "user" else "model"
|
90 |
gemini_messages.append({"role": role, "parts": [msg["content"]]})
|
91 |
-
|
92 |
response = model.generate_content([m["parts"][0] for m in gemini_messages])
|
93 |
return response.text
|
94 |
|
95 |
-
|
|
|
|
|
|
|
96 |
"""Chat with SambaNova's models using their OpenAI-compatible API."""
|
97 |
client = openai.OpenAI(
|
98 |
api_key=api_key,
|
99 |
base_url="https://api.sambanova.ai/v1",
|
100 |
)
|
101 |
-
|
102 |
response = client.chat.completions.create(
|
103 |
-
model=model_name, # Use the specific model name passed in
|
104 |
-
messages=messages,
|
105 |
-
temperature=0.1,
|
106 |
-
top_p=0.1
|
107 |
)
|
108 |
return response.choices[0].message.content
|
109 |
|
110 |
-
|
|
|
|
|
|
|
111 |
"""Chat with Hyperbolic's models using their OpenAI-compatible API."""
|
112 |
-
client = OpenAI(
|
113 |
-
|
114 |
-
base_url="https://api.hyperbolic.xyz/v1"
|
115 |
-
)
|
116 |
-
|
117 |
# Add system message to the start of the messages list
|
118 |
full_messages = [
|
119 |
{"role": "system", "content": "You are a helpful assistant. Be descriptive and clear."},
|
120 |
-
*messages
|
121 |
]
|
122 |
-
|
123 |
response = client.chat.completions.create(
|
124 |
model=model_name, # Use the specific model name passed in
|
125 |
messages=full_messages,
|
@@ -128,152 +130,138 @@ def chat_with_hyperbolic(messages: List[Dict], api_key: str, model_name: str = "
|
|
128 |
)
|
129 |
return response.choices[0].message.content
|
130 |
|
|
|
131 |
def multi_model_consensus(
|
132 |
-
question: str,
|
133 |
-
|
134 |
-
rounds: int = 3,
|
135 |
-
progress: gr.Progress = gr.Progress()
|
136 |
-
) -> tuple[str, List[Dict]]:
|
137 |
if not selected_models:
|
138 |
-
|
139 |
-
|
140 |
chat_history = []
|
141 |
discussion_history = []
|
142 |
-
|
143 |
# Initial responses
|
144 |
progress(0, desc="Getting initial responses...")
|
145 |
initial_responses = []
|
146 |
for i, model in enumerate(selected_models):
|
147 |
provider, model_name = model.split(": ", 1)
|
148 |
-
|
149 |
try:
|
150 |
if provider == "Anthropic":
|
151 |
api_key = os.getenv("ANTHROPIC_API_KEY")
|
152 |
-
response = chat_with_anthropic(
|
153 |
-
messages=[{"role": "user", "content": question}],
|
154 |
-
api_key=api_key
|
155 |
-
)
|
156 |
elif provider == "SambaNova":
|
157 |
api_key = os.getenv("SAMBANOVA_API_KEY")
|
158 |
response = chat_with_sambanova(
|
159 |
messages=[
|
160 |
{"role": "system", "content": "You are a helpful assistant"},
|
161 |
-
{"role": "user", "content": question}
|
162 |
],
|
163 |
-
api_key=api_key
|
164 |
)
|
165 |
elif provider == "Hyperbolic": # Add Hyperbolic case
|
166 |
api_key = os.getenv("HYPERBOLIC_API_KEY")
|
167 |
-
response = chat_with_hyperbolic(
|
168 |
-
messages=[{"role": "user", "content": question}],
|
169 |
-
api_key=api_key
|
170 |
-
)
|
171 |
else: # Gemini
|
172 |
api_key = os.getenv("GEMINI_API_KEY")
|
173 |
-
response = chat_with_gemini(
|
174 |
-
|
175 |
-
api_key=api_key
|
176 |
-
)
|
177 |
-
|
178 |
initial_responses.append(f"{model}: {response}")
|
179 |
discussion_history.append(f"Initial response from {model}:\n{response}")
|
180 |
chat_history.append((f"Initial response from {model}", response))
|
181 |
except Exception as e:
|
182 |
chat_history.append((f"Error from {model}", str(e)))
|
183 |
-
|
184 |
# Discussion rounds
|
185 |
for round_num in range(rounds):
|
186 |
progress((round_num + 1) / (rounds + 2), desc=f"Discussion round {round_num + 1}...")
|
187 |
round_responses = []
|
188 |
-
|
189 |
random.shuffle(selected_models) # Randomize order each round
|
190 |
for model in selected_models:
|
191 |
provider, model_name = model.split(": ", 1)
|
192 |
-
|
193 |
try:
|
194 |
discussion_prompt = generate_discussion_prompt(question, discussion_history)
|
195 |
if provider == "Anthropic":
|
196 |
api_key = os.getenv("ANTHROPIC_API_KEY")
|
197 |
response = chat_with_anthropic(
|
198 |
-
messages=[{"role": "user", "content": discussion_prompt}],
|
199 |
-
api_key=api_key
|
200 |
)
|
201 |
elif provider == "SambaNova":
|
202 |
api_key = os.getenv("SAMBANOVA_API_KEY")
|
203 |
response = chat_with_sambanova(
|
204 |
messages=[
|
205 |
{"role": "system", "content": "You are a helpful assistant"},
|
206 |
-
{"role": "user", "content": discussion_prompt}
|
207 |
],
|
208 |
-
api_key=api_key
|
209 |
)
|
210 |
elif provider == "Hyperbolic": # Add Hyperbolic case
|
211 |
api_key = os.getenv("HYPERBOLIC_API_KEY")
|
212 |
response = chat_with_hyperbolic(
|
213 |
-
messages=[{"role": "user", "content": discussion_prompt}],
|
214 |
-
api_key=api_key
|
215 |
)
|
216 |
else: # Gemini
|
217 |
api_key = os.getenv("GEMINI_API_KEY")
|
218 |
response = chat_with_gemini(
|
219 |
-
messages=[{"role": "user", "content": discussion_prompt}],
|
220 |
-
api_key=api_key
|
221 |
)
|
222 |
-
|
223 |
round_responses.append(f"{model}: {response}")
|
224 |
discussion_history.append(f"Round {round_num + 1} - {model}:\n{response}")
|
225 |
chat_history.append((f"Round {round_num + 1} - {model}", response))
|
226 |
except Exception as e:
|
227 |
chat_history.append((f"Error from {model} in round {round_num + 1}", str(e)))
|
228 |
-
|
229 |
# Final consensus
|
230 |
progress(0.9, desc="Building final consensus...")
|
231 |
model = selected_models[0]
|
232 |
provider, model_name = model.split(": ", 1)
|
233 |
-
|
234 |
try:
|
235 |
consensus_prompt = generate_consensus_prompt(question, discussion_history)
|
236 |
if provider == "Anthropic":
|
237 |
api_key = os.getenv("ANTHROPIC_API_KEY")
|
238 |
final_consensus = chat_with_anthropic(
|
239 |
-
messages=[{"role": "user", "content": consensus_prompt}],
|
240 |
-
api_key=api_key
|
241 |
)
|
242 |
elif provider == "SambaNova":
|
243 |
api_key = os.getenv("SAMBANOVA_API_KEY")
|
244 |
final_consensus = chat_with_sambanova(
|
245 |
messages=[
|
246 |
{"role": "system", "content": "You are a helpful assistant"},
|
247 |
-
{"role": "user", "content": consensus_prompt}
|
248 |
],
|
249 |
-
api_key=api_key
|
250 |
)
|
251 |
elif provider == "Hyperbolic": # Add Hyperbolic case
|
252 |
api_key = os.getenv("HYPERBOLIC_API_KEY")
|
253 |
final_consensus = chat_with_hyperbolic(
|
254 |
-
messages=[{"role": "user", "content": consensus_prompt}],
|
255 |
-
api_key=api_key
|
256 |
)
|
257 |
else: # Gemini
|
258 |
api_key = os.getenv("GEMINI_API_KEY")
|
259 |
final_consensus = chat_with_gemini(
|
260 |
-
messages=[{"role": "user", "content": consensus_prompt}],
|
261 |
-
api_key=api_key
|
262 |
)
|
263 |
except Exception as e:
|
264 |
final_consensus = f"Error getting consensus from {model}: {str(e)}"
|
265 |
-
|
266 |
chat_history.append(("Final Consensus", final_consensus))
|
267 |
-
|
268 |
progress(1.0, desc="Done!")
|
269 |
return chat_history
|
270 |
|
|
|
271 |
with gr.Blocks() as demo:
|
272 |
gr.Markdown("# Experimental Multi-Model Consensus Chat")
|
273 |
-
gr.Markdown(
|
|
|
274 |
The models will discuss with each other and attempt to reach a consensus.
|
275 |
-
Maximum 3 models can be selected at once."""
|
276 |
-
|
|
|
277 |
with gr.Row():
|
278 |
with gr.Column():
|
279 |
model_selector = gr.Dropdown(
|
@@ -282,7 +270,7 @@ with gr.Blocks() as demo:
|
|
282 |
label="Select Models (max 3)",
|
283 |
info="Choose up to 3 models to participate in the discussion",
|
284 |
value=["SambaNova: Llama-3.2-90B-Vision-Instruct", "Hyperbolic: Qwen/Qwen2.5-Coder-32B-Instruct"],
|
285 |
-
max_choices=3
|
286 |
)
|
287 |
rounds_slider = gr.Slider(
|
288 |
minimum=1,
|
@@ -290,22 +278,20 @@ with gr.Blocks() as demo:
|
|
290 |
value=1,
|
291 |
step=1,
|
292 |
label="Discussion Rounds",
|
293 |
-
info="Number of rounds of discussion between models"
|
294 |
)
|
295 |
-
|
296 |
chatbot = gr.Chatbot(height=600, label="Multi-Model Discussion")
|
297 |
msg = gr.Textbox(label="Your Question", placeholder="Ask a question for the models to discuss...")
|
298 |
-
|
299 |
def respond(message, selected_models, rounds):
|
300 |
chat_history = multi_model_consensus(message, selected_models, rounds)
|
301 |
return chat_history
|
302 |
-
|
303 |
-
msg.submit(
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
api_name="consensus_chat"
|
308 |
-
)
|
309 |
|
310 |
if __name__ == "__main__":
|
311 |
-
demo.launch()
|
|
|
1 |
import os
|
|
|
|
|
2 |
import random
|
3 |
+
from typing import Dict, List
|
4 |
+
|
5 |
import google.generativeai as genai
|
6 |
+
import gradio as gr
|
7 |
import openai
|
8 |
+
from anthropic import Anthropic
|
9 |
from openai import OpenAI # Add explicit OpenAI import
|
10 |
|
11 |
+
|
12 |
def get_all_models():
|
13 |
"""Get all available models from the registries."""
|
14 |
return [
|
|
|
30 |
"Hyperbolic: meta-llama/Meta-Llama-3.1-405B-Instruct",
|
31 |
]
|
32 |
|
33 |
+
|
34 |
def generate_discussion_prompt(original_question: str, previous_responses: List[str]) -> str:
|
35 |
+
"""Generate a prompt for models to discuss and build upon previous
|
36 |
+
responses."""
|
37 |
prompt = f"""You are participating in a multi-AI discussion about this question: "{original_question}"
|
38 |
|
39 |
Previous responses from other AI models:
|
|
|
48 |
Keep your response focused and concise (max 3-4 paragraphs)."""
|
49 |
return prompt
|
50 |
|
51 |
+
|
52 |
def generate_consensus_prompt(original_question: str, discussion_history: List[str]) -> str:
|
53 |
"""Generate a prompt for final consensus building."""
|
54 |
return f"""Review this multi-AI discussion about: "{original_question}"
|
|
|
64 |
|
65 |
Keep the final consensus concise but complete."""
|
66 |
|
67 |
+
|
68 |
+
def chat_with_openai(model: str, messages: List[Dict], api_key: str | None) -> str:
|
69 |
import openai
|
70 |
+
|
71 |
client = openai.OpenAI(api_key=api_key)
|
72 |
+
response = client.chat.completions.create(model=model, messages=messages)
|
|
|
|
|
|
|
73 |
return response.choices[0].message.content
|
74 |
|
75 |
+
|
76 |
+
def chat_with_anthropic(messages: List[Dict], api_key: str | None) -> str:
|
77 |
"""Chat with Anthropic's Claude model."""
|
78 |
client = Anthropic(api_key=api_key)
|
79 |
+
response = client.messages.create(model="claude-3-sonnet-20240229", messages=messages, max_tokens=1024)
|
|
|
|
|
|
|
|
|
80 |
return response.content[0].text
|
81 |
|
82 |
+
|
83 |
+
def chat_with_gemini(messages: List[Dict], api_key: str | None) -> str:
|
84 |
"""Chat with Gemini Pro model."""
|
85 |
genai.configure(api_key=api_key)
|
86 |
+
model = genai.GenerativeModel("gemini-pro")
|
87 |
+
|
88 |
# Convert messages to Gemini format
|
89 |
gemini_messages = []
|
90 |
for msg in messages:
|
91 |
role = "user" if msg["role"] == "user" else "model"
|
92 |
gemini_messages.append({"role": role, "parts": [msg["content"]]})
|
93 |
+
|
94 |
response = model.generate_content([m["parts"][0] for m in gemini_messages])
|
95 |
return response.text
|
96 |
|
97 |
+
|
98 |
+
def chat_with_sambanova(
|
99 |
+
messages: List[Dict], api_key: str | None, model_name: str = "Llama-3.2-90B-Vision-Instruct"
|
100 |
+
) -> str:
|
101 |
"""Chat with SambaNova's models using their OpenAI-compatible API."""
|
102 |
client = openai.OpenAI(
|
103 |
api_key=api_key,
|
104 |
base_url="https://api.sambanova.ai/v1",
|
105 |
)
|
106 |
+
|
107 |
response = client.chat.completions.create(
|
108 |
+
model=model_name, messages=messages, temperature=0.1, top_p=0.1 # Use the specific model name passed in
|
|
|
|
|
|
|
109 |
)
|
110 |
return response.choices[0].message.content
|
111 |
|
112 |
+
|
113 |
+
def chat_with_hyperbolic(
|
114 |
+
messages: List[Dict], api_key: str | None, model_name: str = "Qwen/Qwen2.5-Coder-32B-Instruct"
|
115 |
+
) -> str:
|
116 |
"""Chat with Hyperbolic's models using their OpenAI-compatible API."""
|
117 |
+
client = OpenAI(api_key=api_key, base_url="https://api.hyperbolic.xyz/v1")
|
118 |
+
|
|
|
|
|
|
|
119 |
# Add system message to the start of the messages list
|
120 |
full_messages = [
|
121 |
{"role": "system", "content": "You are a helpful assistant. Be descriptive and clear."},
|
122 |
+
*messages,
|
123 |
]
|
124 |
+
|
125 |
response = client.chat.completions.create(
|
126 |
model=model_name, # Use the specific model name passed in
|
127 |
messages=full_messages,
|
|
|
130 |
)
|
131 |
return response.choices[0].message.content
|
132 |
|
133 |
+
|
134 |
def multi_model_consensus(
|
135 |
+
question: str, selected_models: List[str], rounds: int = 3, progress: gr.Progress = gr.Progress()
|
136 |
+
) -> list[tuple[str, str]]:
|
|
|
|
|
|
|
137 |
if not selected_models:
|
138 |
+
raise gr.Error("Please select at least one model to chat with.")
|
139 |
+
|
140 |
chat_history = []
|
141 |
discussion_history = []
|
142 |
+
|
143 |
# Initial responses
|
144 |
progress(0, desc="Getting initial responses...")
|
145 |
initial_responses = []
|
146 |
for i, model in enumerate(selected_models):
|
147 |
provider, model_name = model.split(": ", 1)
|
148 |
+
|
149 |
try:
|
150 |
if provider == "Anthropic":
|
151 |
api_key = os.getenv("ANTHROPIC_API_KEY")
|
152 |
+
response = chat_with_anthropic(messages=[{"role": "user", "content": question}], api_key=api_key)
|
|
|
|
|
|
|
153 |
elif provider == "SambaNova":
|
154 |
api_key = os.getenv("SAMBANOVA_API_KEY")
|
155 |
response = chat_with_sambanova(
|
156 |
messages=[
|
157 |
{"role": "system", "content": "You are a helpful assistant"},
|
158 |
+
{"role": "user", "content": question},
|
159 |
],
|
160 |
+
api_key=api_key,
|
161 |
)
|
162 |
elif provider == "Hyperbolic": # Add Hyperbolic case
|
163 |
api_key = os.getenv("HYPERBOLIC_API_KEY")
|
164 |
+
response = chat_with_hyperbolic(messages=[{"role": "user", "content": question}], api_key=api_key)
|
|
|
|
|
|
|
165 |
else: # Gemini
|
166 |
api_key = os.getenv("GEMINI_API_KEY")
|
167 |
+
response = chat_with_gemini(messages=[{"role": "user", "content": question}], api_key=api_key)
|
168 |
+
|
|
|
|
|
|
|
169 |
initial_responses.append(f"{model}: {response}")
|
170 |
discussion_history.append(f"Initial response from {model}:\n{response}")
|
171 |
chat_history.append((f"Initial response from {model}", response))
|
172 |
except Exception as e:
|
173 |
chat_history.append((f"Error from {model}", str(e)))
|
174 |
+
|
175 |
# Discussion rounds
|
176 |
for round_num in range(rounds):
|
177 |
progress((round_num + 1) / (rounds + 2), desc=f"Discussion round {round_num + 1}...")
|
178 |
round_responses = []
|
179 |
+
|
180 |
random.shuffle(selected_models) # Randomize order each round
|
181 |
for model in selected_models:
|
182 |
provider, model_name = model.split(": ", 1)
|
183 |
+
|
184 |
try:
|
185 |
discussion_prompt = generate_discussion_prompt(question, discussion_history)
|
186 |
if provider == "Anthropic":
|
187 |
api_key = os.getenv("ANTHROPIC_API_KEY")
|
188 |
response = chat_with_anthropic(
|
189 |
+
messages=[{"role": "user", "content": discussion_prompt}], api_key=api_key
|
|
|
190 |
)
|
191 |
elif provider == "SambaNova":
|
192 |
api_key = os.getenv("SAMBANOVA_API_KEY")
|
193 |
response = chat_with_sambanova(
|
194 |
messages=[
|
195 |
{"role": "system", "content": "You are a helpful assistant"},
|
196 |
+
{"role": "user", "content": discussion_prompt},
|
197 |
],
|
198 |
+
api_key=api_key,
|
199 |
)
|
200 |
elif provider == "Hyperbolic": # Add Hyperbolic case
|
201 |
api_key = os.getenv("HYPERBOLIC_API_KEY")
|
202 |
response = chat_with_hyperbolic(
|
203 |
+
messages=[{"role": "user", "content": discussion_prompt}], api_key=api_key
|
|
|
204 |
)
|
205 |
else: # Gemini
|
206 |
api_key = os.getenv("GEMINI_API_KEY")
|
207 |
response = chat_with_gemini(
|
208 |
+
messages=[{"role": "user", "content": discussion_prompt}], api_key=api_key
|
|
|
209 |
)
|
210 |
+
|
211 |
round_responses.append(f"{model}: {response}")
|
212 |
discussion_history.append(f"Round {round_num + 1} - {model}:\n{response}")
|
213 |
chat_history.append((f"Round {round_num + 1} - {model}", response))
|
214 |
except Exception as e:
|
215 |
chat_history.append((f"Error from {model} in round {round_num + 1}", str(e)))
|
216 |
+
|
217 |
# Final consensus
|
218 |
progress(0.9, desc="Building final consensus...")
|
219 |
model = selected_models[0]
|
220 |
provider, model_name = model.split(": ", 1)
|
221 |
+
|
222 |
try:
|
223 |
consensus_prompt = generate_consensus_prompt(question, discussion_history)
|
224 |
if provider == "Anthropic":
|
225 |
api_key = os.getenv("ANTHROPIC_API_KEY")
|
226 |
final_consensus = chat_with_anthropic(
|
227 |
+
messages=[{"role": "user", "content": consensus_prompt}], api_key=api_key
|
|
|
228 |
)
|
229 |
elif provider == "SambaNova":
|
230 |
api_key = os.getenv("SAMBANOVA_API_KEY")
|
231 |
final_consensus = chat_with_sambanova(
|
232 |
messages=[
|
233 |
{"role": "system", "content": "You are a helpful assistant"},
|
234 |
+
{"role": "user", "content": consensus_prompt},
|
235 |
],
|
236 |
+
api_key=api_key,
|
237 |
)
|
238 |
elif provider == "Hyperbolic": # Add Hyperbolic case
|
239 |
api_key = os.getenv("HYPERBOLIC_API_KEY")
|
240 |
final_consensus = chat_with_hyperbolic(
|
241 |
+
messages=[{"role": "user", "content": consensus_prompt}], api_key=api_key
|
|
|
242 |
)
|
243 |
else: # Gemini
|
244 |
api_key = os.getenv("GEMINI_API_KEY")
|
245 |
final_consensus = chat_with_gemini(
|
246 |
+
messages=[{"role": "user", "content": consensus_prompt}], api_key=api_key
|
|
|
247 |
)
|
248 |
except Exception as e:
|
249 |
final_consensus = f"Error getting consensus from {model}: {str(e)}"
|
250 |
+
|
251 |
chat_history.append(("Final Consensus", final_consensus))
|
252 |
+
|
253 |
progress(1.0, desc="Done!")
|
254 |
return chat_history
|
255 |
|
256 |
+
|
257 |
with gr.Blocks() as demo:
|
258 |
gr.Markdown("# Experimental Multi-Model Consensus Chat")
|
259 |
+
gr.Markdown(
|
260 |
+
"""Select multiple models to collaborate on answering your question.
|
261 |
The models will discuss with each other and attempt to reach a consensus.
|
262 |
+
Maximum 3 models can be selected at once."""
|
263 |
+
)
|
264 |
+
|
265 |
with gr.Row():
|
266 |
with gr.Column():
|
267 |
model_selector = gr.Dropdown(
|
|
|
270 |
label="Select Models (max 3)",
|
271 |
info="Choose up to 3 models to participate in the discussion",
|
272 |
value=["SambaNova: Llama-3.2-90B-Vision-Instruct", "Hyperbolic: Qwen/Qwen2.5-Coder-32B-Instruct"],
|
273 |
+
max_choices=3,
|
274 |
)
|
275 |
rounds_slider = gr.Slider(
|
276 |
minimum=1,
|
|
|
278 |
value=1,
|
279 |
step=1,
|
280 |
label="Discussion Rounds",
|
281 |
+
info="Number of rounds of discussion between models",
|
282 |
)
|
283 |
+
|
284 |
chatbot = gr.Chatbot(height=600, label="Multi-Model Discussion")
|
285 |
msg = gr.Textbox(label="Your Question", placeholder="Ask a question for the models to discuss...")
|
286 |
+
|
287 |
def respond(message, selected_models, rounds):
|
288 |
chat_history = multi_model_consensus(message, selected_models, rounds)
|
289 |
return chat_history
|
290 |
+
|
291 |
+
msg.submit(respond, [msg, model_selector, rounds_slider], [chatbot], api_name="consensus_chat")
|
292 |
+
|
293 |
+
for fn in demo.fns.values():
|
294 |
+
fn.api_name = False
|
|
|
|
|
295 |
|
296 |
if __name__ == "__main__":
|
297 |
+
demo.launch()
|
app_marco_o1.py
CHANGED
@@ -5,5 +5,8 @@ import transformers_gradio
|
|
5 |
demo = gr.load(name="AIDC-AI/Marco-o1", src=transformers_gradio.registry)
|
6 |
demo.fn = spaces.GPU()(demo.fn)
|
7 |
|
|
|
|
|
|
|
8 |
if __name__ == "__main__":
|
9 |
-
demo.launch()
|
|
|
5 |
demo = gr.load(name="AIDC-AI/Marco-o1", src=transformers_gradio.registry)
|
6 |
demo.fn = spaces.GPU()(demo.fn)
|
7 |
|
8 |
+
for fn in demo.fns.values():
|
9 |
+
fn.api_name = False
|
10 |
+
|
11 |
if __name__ == "__main__":
|
12 |
+
demo.launch()
|