Spaces:
Runtime error
Runtime error
Delete model/detr3d_head.py
Browse files- model/detr3d_head.py +0 -469
model/detr3d_head.py
DELETED
|
@@ -1,469 +0,0 @@
|
|
| 1 |
-
import copy
|
| 2 |
-
from typing import Dict, List, Tuple
|
| 3 |
-
|
| 4 |
-
import torch
|
| 5 |
-
import torch.nn as nn
|
| 6 |
-
from mmcv.cnn import Linear
|
| 7 |
-
from mmdet.models.dense_heads import DETRHead
|
| 8 |
-
from mmdet.models.layers import inverse_sigmoid
|
| 9 |
-
from mmdet.models.utils import multi_apply
|
| 10 |
-
from mmdet.utils import InstanceList, OptInstanceList, reduce_mean
|
| 11 |
-
from mmengine.model import bias_init_with_prob
|
| 12 |
-
from mmengine.structures import InstanceData
|
| 13 |
-
from torch import Tensor
|
| 14 |
-
|
| 15 |
-
from mmdet3d.registry import MODELS, TASK_UTILS
|
| 16 |
-
from .util import normalize_bbox
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
@MODELS.register_module()
|
| 20 |
-
class DETR3DHead(DETRHead):
|
| 21 |
-
"""Head of DETR3D.
|
| 22 |
-
|
| 23 |
-
Args:
|
| 24 |
-
with_box_refine (bool): Whether to refine the reference points
|
| 25 |
-
in the decoder. Defaults to False.
|
| 26 |
-
as_two_stage (bool) : Whether to generate the proposal from
|
| 27 |
-
the outputs of encoder.
|
| 28 |
-
transformer (obj:`ConfigDict`): ConfigDict is used for building
|
| 29 |
-
the Encoder and Decoder.
|
| 30 |
-
bbox_coder (obj:`ConfigDict`): Configs to build the bbox coder
|
| 31 |
-
num_cls_fcs (int) : the number of layers in cls and reg branch
|
| 32 |
-
code_weights (List[double]) : loss weights of
|
| 33 |
-
(cx,cy,l,w,cz,h,sin(φ),cos(φ),v_x,v_y)
|
| 34 |
-
code_size (int) : size of code_weights
|
| 35 |
-
"""
|
| 36 |
-
|
| 37 |
-
def __init__(
|
| 38 |
-
self,
|
| 39 |
-
*args,
|
| 40 |
-
with_box_refine=False,
|
| 41 |
-
as_two_stage=False,
|
| 42 |
-
transformer=None,
|
| 43 |
-
bbox_coder=None,
|
| 44 |
-
num_cls_fcs=2,
|
| 45 |
-
code_weights=[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.2, 0.2],
|
| 46 |
-
code_size=10,
|
| 47 |
-
num_query=900,
|
| 48 |
-
in_channels=256,
|
| 49 |
-
positional_encoding = None,
|
| 50 |
-
**kwargs):
|
| 51 |
-
|
| 52 |
-
self.with_box_refine = with_box_refine
|
| 53 |
-
self.as_two_stage = as_two_stage
|
| 54 |
-
self.code_weights = code_weights
|
| 55 |
-
self.code_size = code_size
|
| 56 |
-
self.num_query = num_query
|
| 57 |
-
self.in_channels = in_channels
|
| 58 |
-
self.positional_encoding = positional_encoding
|
| 59 |
-
|
| 60 |
-
# Remove unsupported kwargs explicitly
|
| 61 |
-
kwargs.pop('num_query', None)
|
| 62 |
-
kwargs.pop('in_channels', None)
|
| 63 |
-
def dummy_init_layers():
|
| 64 |
-
pass
|
| 65 |
-
self._init_layers = dummy_init_layers
|
| 66 |
-
|
| 67 |
-
# Now call base class constructor (won't crash now)
|
| 68 |
-
super(DETR3DHead, self).__init__(*args, **kwargs)
|
| 69 |
-
|
| 70 |
-
# Build transformer now
|
| 71 |
-
if self.as_two_stage:
|
| 72 |
-
transformer['as_two_stage'] = True
|
| 73 |
-
self.transformer = MODELS.build(transformer)
|
| 74 |
-
|
| 75 |
-
# Set bbox coder and sampler
|
| 76 |
-
self.bbox_coder = TASK_UTILS.build(bbox_coder)
|
| 77 |
-
self.pc_range = self.bbox_coder.pc_range
|
| 78 |
-
self.num_cls_fcs = num_cls_fcs - 1
|
| 79 |
-
sampler_cfg = dict(type='PseudoSampler')
|
| 80 |
-
self.sampler = TASK_UTILS.build(sampler_cfg)
|
| 81 |
-
|
| 82 |
-
# Now call real _init_layers
|
| 83 |
-
self._init_layers = self._real_init_layers # restore
|
| 84 |
-
self._init_layers()
|
| 85 |
-
|
| 86 |
-
self.code_weights = nn.Parameter(
|
| 87 |
-
torch.tensor(self.code_weights, requires_grad=False),
|
| 88 |
-
requires_grad=False)
|
| 89 |
-
|
| 90 |
-
# forward_train -> loss
|
| 91 |
-
def _real_init_layers(self):
|
| 92 |
-
"""Initialize classification branch and regression branch of head."""
|
| 93 |
-
cls_branch = []
|
| 94 |
-
for _ in range(self.num_reg_fcs):
|
| 95 |
-
cls_branch.append(Linear(self.embed_dims, self.embed_dims))
|
| 96 |
-
cls_branch.append(nn.LayerNorm(self.embed_dims))
|
| 97 |
-
cls_branch.append(nn.ReLU(inplace=True))
|
| 98 |
-
cls_branch.append(Linear(self.embed_dims, self.cls_out_channels))
|
| 99 |
-
fc_cls = nn.Sequential(*cls_branch)
|
| 100 |
-
|
| 101 |
-
reg_branch = []
|
| 102 |
-
for _ in range(self.num_reg_fcs):
|
| 103 |
-
reg_branch.append(Linear(self.embed_dims, self.embed_dims))
|
| 104 |
-
reg_branch.append(nn.ReLU())
|
| 105 |
-
reg_branch.append(Linear(self.embed_dims, self.code_size))
|
| 106 |
-
reg_branch = nn.Sequential(*reg_branch)
|
| 107 |
-
|
| 108 |
-
def _get_clones(module, N):
|
| 109 |
-
return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
|
| 110 |
-
|
| 111 |
-
# last reg_branch is used to generate proposal from
|
| 112 |
-
# encode feature map when as_two_stage is True.
|
| 113 |
-
num_pred = (self.transformer.decoder.num_layers + 1) if \
|
| 114 |
-
self.as_two_stage else self.transformer.decoder.num_layers
|
| 115 |
-
|
| 116 |
-
if self.with_box_refine:
|
| 117 |
-
self.cls_branches = _get_clones(fc_cls, num_pred)
|
| 118 |
-
self.reg_branches = _get_clones(reg_branch, num_pred)
|
| 119 |
-
else:
|
| 120 |
-
self.cls_branches = nn.ModuleList(
|
| 121 |
-
[fc_cls for _ in range(num_pred)])
|
| 122 |
-
self.reg_branches = nn.ModuleList(
|
| 123 |
-
[reg_branch for _ in range(num_pred)])
|
| 124 |
-
|
| 125 |
-
if not self.as_two_stage:
|
| 126 |
-
self.query_embedding = nn.Embedding(self.num_query,
|
| 127 |
-
self.embed_dims * 2)
|
| 128 |
-
|
| 129 |
-
def init_weights(self):
|
| 130 |
-
"""Initialize weights of the DeformDETR head."""
|
| 131 |
-
self.transformer.init_weights()
|
| 132 |
-
if self.loss_cls.use_sigmoid:
|
| 133 |
-
bias_init = bias_init_with_prob(0.01)
|
| 134 |
-
for m in self.cls_branches:
|
| 135 |
-
nn.init.constant_(m[-1].bias, bias_init)
|
| 136 |
-
|
| 137 |
-
def forward(self, mlvl_feats: List[Tensor], img_metas: List[Dict],
|
| 138 |
-
**kwargs) -> Dict[str, Tensor]:
|
| 139 |
-
"""Forward function.
|
| 140 |
-
|
| 141 |
-
Args:
|
| 142 |
-
mlvl_feats (List[Tensor]): Features from the upstream
|
| 143 |
-
network, each is a 5D-tensor with shape
|
| 144 |
-
(B, N, C, H, W).
|
| 145 |
-
Returns:
|
| 146 |
-
all_cls_scores (Tensor): Outputs from the classification head,
|
| 147 |
-
shape [nb_dec, bs, num_query, cls_out_channels]. Note
|
| 148 |
-
cls_out_channels should includes background.
|
| 149 |
-
all_bbox_preds (Tensor): Sigmoid outputs from the regression
|
| 150 |
-
head with normalized coordinate format
|
| 151 |
-
(cx, cy, l, w, cz, h, sin(φ), cos(φ), vx, vy).
|
| 152 |
-
Shape [nb_dec, bs, num_query, 10].
|
| 153 |
-
"""
|
| 154 |
-
query_embeds = self.query_embedding.weight
|
| 155 |
-
hs, init_reference, inter_references = self.transformer(
|
| 156 |
-
mlvl_feats,
|
| 157 |
-
query_embeds,
|
| 158 |
-
reg_branches=self.reg_branches if self.with_box_refine else None,
|
| 159 |
-
img_metas=img_metas,
|
| 160 |
-
**kwargs)
|
| 161 |
-
hs = hs.permute(0, 2, 1, 3)
|
| 162 |
-
outputs_classes = []
|
| 163 |
-
outputs_coords = []
|
| 164 |
-
|
| 165 |
-
for lvl in range(hs.shape[0]):
|
| 166 |
-
if lvl == 0:
|
| 167 |
-
reference = init_reference
|
| 168 |
-
else:
|
| 169 |
-
reference = inter_references[lvl - 1]
|
| 170 |
-
reference = inverse_sigmoid(reference)
|
| 171 |
-
outputs_class = self.cls_branches[lvl](hs[lvl])
|
| 172 |
-
tmp = self.reg_branches[lvl](hs[lvl]) # shape: ([B, num_q, 10])
|
| 173 |
-
# TODO: check the shape of reference
|
| 174 |
-
assert reference.shape[-1] == 3
|
| 175 |
-
tmp[..., 0:2] += reference[..., 0:2]
|
| 176 |
-
tmp[..., 0:2] = tmp[..., 0:2].sigmoid()
|
| 177 |
-
tmp[..., 4:5] += reference[..., 2:3]
|
| 178 |
-
tmp[..., 4:5] = tmp[..., 4:5].sigmoid()
|
| 179 |
-
|
| 180 |
-
tmp[..., 0:1] = \
|
| 181 |
-
tmp[..., 0:1] * (self.pc_range[3] - self.pc_range[0]) \
|
| 182 |
-
+ self.pc_range[0]
|
| 183 |
-
tmp[..., 1:2] = \
|
| 184 |
-
tmp[..., 1:2] * (self.pc_range[4] - self.pc_range[1]) \
|
| 185 |
-
+ self.pc_range[1]
|
| 186 |
-
tmp[..., 4:5] = \
|
| 187 |
-
tmp[..., 4:5] * (self.pc_range[5] - self.pc_range[2]) \
|
| 188 |
-
+ self.pc_range[2]
|
| 189 |
-
|
| 190 |
-
# TODO: check if using sigmoid
|
| 191 |
-
outputs_coord = tmp
|
| 192 |
-
outputs_classes.append(outputs_class)
|
| 193 |
-
outputs_coords.append(outputs_coord)
|
| 194 |
-
|
| 195 |
-
outputs_classes = torch.stack(outputs_classes)
|
| 196 |
-
outputs_coords = torch.stack(outputs_coords)
|
| 197 |
-
outs = {
|
| 198 |
-
'all_cls_scores': outputs_classes,
|
| 199 |
-
'all_bbox_preds': outputs_coords,
|
| 200 |
-
'enc_cls_scores': None,
|
| 201 |
-
'enc_bbox_preds': None,
|
| 202 |
-
}
|
| 203 |
-
return outs
|
| 204 |
-
|
| 205 |
-
def _get_target_single(
|
| 206 |
-
self,
|
| 207 |
-
cls_score: Tensor, # [query, num_cls]
|
| 208 |
-
bbox_pred: Tensor, # [query, 10]
|
| 209 |
-
gt_instances_3d: InstanceList) -> Tuple[Tensor, ...]:
|
| 210 |
-
"""Compute regression and classification targets for a single image."""
|
| 211 |
-
# turn bottm center into gravity center
|
| 212 |
-
gt_bboxes = gt_instances_3d.bboxes_3d # [num_gt, 9]
|
| 213 |
-
gt_bboxes = torch.cat(
|
| 214 |
-
(gt_bboxes.gravity_center, gt_bboxes.tensor[:, 3:]), dim=1)
|
| 215 |
-
|
| 216 |
-
gt_labels = gt_instances_3d.labels_3d # [num_gt, num_cls]
|
| 217 |
-
# assigner and sampler: PseudoSampler
|
| 218 |
-
assign_result = self.assigner.assign(
|
| 219 |
-
bbox_pred, cls_score, gt_bboxes, gt_labels, gt_bboxes_ignore=None)
|
| 220 |
-
sampling_result = self.sampler.sample(
|
| 221 |
-
assign_result, InstanceData(priors=bbox_pred),
|
| 222 |
-
InstanceData(bboxes_3d=gt_bboxes))
|
| 223 |
-
pos_inds = sampling_result.pos_inds
|
| 224 |
-
neg_inds = sampling_result.neg_inds
|
| 225 |
-
|
| 226 |
-
# label targets
|
| 227 |
-
num_bboxes = bbox_pred.size(0)
|
| 228 |
-
labels = gt_bboxes.new_full((num_bboxes, ),
|
| 229 |
-
self.num_classes,
|
| 230 |
-
dtype=torch.long)
|
| 231 |
-
labels[pos_inds] = gt_labels[sampling_result.pos_assigned_gt_inds]
|
| 232 |
-
label_weights = gt_bboxes.new_ones(num_bboxes)
|
| 233 |
-
|
| 234 |
-
# bbox targets
|
| 235 |
-
# theta in gt_bbox here is still a single scalar
|
| 236 |
-
bbox_targets = torch.zeros_like(bbox_pred)[..., :self.code_size - 1]
|
| 237 |
-
bbox_weights = torch.zeros_like(bbox_pred)
|
| 238 |
-
# only matched query will learn from bbox coord
|
| 239 |
-
bbox_weights[pos_inds] = 1.0
|
| 240 |
-
|
| 241 |
-
# fix empty gt bug in multi gpu training
|
| 242 |
-
if sampling_result.pos_gt_bboxes.shape[0] == 0:
|
| 243 |
-
sampling_result.pos_gt_bboxes = \
|
| 244 |
-
sampling_result.pos_gt_bboxes.reshape(0, self.code_size - 1)
|
| 245 |
-
|
| 246 |
-
bbox_targets[pos_inds] = sampling_result.pos_gt_bboxes
|
| 247 |
-
return (labels, label_weights, bbox_targets, bbox_weights, pos_inds,
|
| 248 |
-
neg_inds)
|
| 249 |
-
|
| 250 |
-
def get_targets(
|
| 251 |
-
self,
|
| 252 |
-
batch_cls_scores: List[Tensor], # bs[num_q,num_cls]
|
| 253 |
-
batch_bbox_preds: List[Tensor], # bs[num_q,10]
|
| 254 |
-
batch_gt_instances_3d: InstanceList) -> tuple():
|
| 255 |
-
""""Compute regression and classification targets for a batch image for
|
| 256 |
-
a single decoder layer.
|
| 257 |
-
|
| 258 |
-
Args:
|
| 259 |
-
batch_cls_scores (list[Tensor]): Box score logits from a single
|
| 260 |
-
decoder layer for each image with shape [num_query,
|
| 261 |
-
cls_out_channels].
|
| 262 |
-
batch_bbox_preds (list[Tensor]): Sigmoid outputs from a single
|
| 263 |
-
decoder layer for each image, with normalized coordinate
|
| 264 |
-
(cx,cy,l,w,cz,h,sin(φ),cos(φ),v_x,v_y) and
|
| 265 |
-
shape [num_query, 10]
|
| 266 |
-
batch_gt_instances_3d (list[:obj:`InstanceData`]): Batch of
|
| 267 |
-
gt_instance. It usually includes ``bboxes_3d``、``labels_3d``.
|
| 268 |
-
Returns:
|
| 269 |
-
tuple: a tuple containing the following targets.
|
| 270 |
-
- labels_list (list[Tensor]): Labels for all images.
|
| 271 |
-
- label_weights_list (list[Tensor]): Label weights for all \
|
| 272 |
-
images.
|
| 273 |
-
- bbox_targets_list (list[Tensor]): BBox targets for all \
|
| 274 |
-
images.
|
| 275 |
-
- bbox_weights_list (list[Tensor]): BBox weights for all \
|
| 276 |
-
images.
|
| 277 |
-
- num_total_pos (int): Number of positive samples in all \
|
| 278 |
-
images.
|
| 279 |
-
- num_total_neg (int): Number of negative samples in all \
|
| 280 |
-
images.
|
| 281 |
-
"""
|
| 282 |
-
(labels_list, label_weights_list, bbox_targets_list, bbox_weights_list,
|
| 283 |
-
pos_inds_list, neg_inds_list) = multi_apply(self._get_target_single,
|
| 284 |
-
batch_cls_scores,
|
| 285 |
-
batch_bbox_preds,
|
| 286 |
-
batch_gt_instances_3d)
|
| 287 |
-
|
| 288 |
-
num_total_pos = sum((inds.numel() for inds in pos_inds_list))
|
| 289 |
-
num_total_neg = sum((inds.numel() for inds in neg_inds_list))
|
| 290 |
-
return (labels_list, label_weights_list, bbox_targets_list,
|
| 291 |
-
bbox_weights_list, num_total_pos, num_total_neg)
|
| 292 |
-
|
| 293 |
-
def loss_by_feat_single(
|
| 294 |
-
self,
|
| 295 |
-
batch_cls_scores: Tensor, # bs,num_q,num_cls
|
| 296 |
-
batch_bbox_preds: Tensor, # bs,num_q,10
|
| 297 |
-
batch_gt_instances_3d: InstanceList
|
| 298 |
-
) -> Tuple[Tensor, Tensor]:
|
| 299 |
-
""""Loss function for outputs from a single decoder layer of a single
|
| 300 |
-
feature level.
|
| 301 |
-
|
| 302 |
-
Args:
|
| 303 |
-
batch_cls_scores (Tensor): Box score logits from a single
|
| 304 |
-
decoder layer for batched images with shape [num_query,
|
| 305 |
-
cls_out_channels].
|
| 306 |
-
batch_bbox_preds (Tensor): Sigmoid outputs from a single
|
| 307 |
-
decoder layer for batched images, with normalized coordinate
|
| 308 |
-
(cx,cy,l,w,cz,h,sin(φ),cos(φ),v_x,v_y) and
|
| 309 |
-
shape [num_query, 10]
|
| 310 |
-
batch_gt_instances_3d (list[:obj:`InstanceData`]): Batch of
|
| 311 |
-
gt_instance_3d. It usually has ``bboxes_3d``,``labels_3d``.
|
| 312 |
-
Returns:
|
| 313 |
-
tulple(Tensor, Tensor): cls and reg loss for outputs from
|
| 314 |
-
a single decoder layer.
|
| 315 |
-
"""
|
| 316 |
-
batch_size = batch_cls_scores.size(0) # batch size
|
| 317 |
-
cls_scores_list = [batch_cls_scores[i] for i in range(batch_size)]
|
| 318 |
-
bbox_preds_list = [batch_bbox_preds[i] for i in range(batch_size)]
|
| 319 |
-
cls_reg_targets = self.get_targets(cls_scores_list, bbox_preds_list,
|
| 320 |
-
batch_gt_instances_3d)
|
| 321 |
-
|
| 322 |
-
(labels_list, label_weights_list, bbox_targets_list, bbox_weights_list,
|
| 323 |
-
num_total_pos, num_total_neg) = cls_reg_targets
|
| 324 |
-
labels = torch.cat(labels_list, 0)
|
| 325 |
-
label_weights = torch.cat(label_weights_list, 0)
|
| 326 |
-
bbox_targets = torch.cat(bbox_targets_list, 0)
|
| 327 |
-
bbox_weights = torch.cat(bbox_weights_list, 0)
|
| 328 |
-
|
| 329 |
-
# classification loss
|
| 330 |
-
batch_cls_scores = batch_cls_scores.reshape(-1, self.cls_out_channels)
|
| 331 |
-
# construct weighted avg_factor to match with the official DETR repo
|
| 332 |
-
cls_avg_factor = num_total_pos * 1.0 + \
|
| 333 |
-
num_total_neg * self.bg_cls_weight
|
| 334 |
-
if self.sync_cls_avg_factor:
|
| 335 |
-
cls_avg_factor = reduce_mean(
|
| 336 |
-
batch_cls_scores.new_tensor([cls_avg_factor]))
|
| 337 |
-
|
| 338 |
-
cls_avg_factor = max(cls_avg_factor, 1)
|
| 339 |
-
loss_cls = self.loss_cls(
|
| 340 |
-
batch_cls_scores, labels, label_weights, avg_factor=cls_avg_factor)
|
| 341 |
-
|
| 342 |
-
# Compute the average number of gt boxes across all gpus, for
|
| 343 |
-
# normalization purposes
|
| 344 |
-
num_total_pos = loss_cls.new_tensor([num_total_pos])
|
| 345 |
-
num_total_pos = torch.clamp(reduce_mean(num_total_pos), min=1).item()
|
| 346 |
-
|
| 347 |
-
# regression L1 loss
|
| 348 |
-
batch_bbox_preds = batch_bbox_preds.reshape(-1,
|
| 349 |
-
batch_bbox_preds.size(-1))
|
| 350 |
-
normalized_bbox_targets = normalize_bbox(bbox_targets, self.pc_range)
|
| 351 |
-
# neg_query is all 0, log(0) is NaN
|
| 352 |
-
isnotnan = torch.isfinite(normalized_bbox_targets).all(dim=-1)
|
| 353 |
-
bbox_weights = bbox_weights * self.code_weights
|
| 354 |
-
|
| 355 |
-
loss_bbox = self.loss_bbox(
|
| 356 |
-
batch_bbox_preds[isnotnan, :self.code_size],
|
| 357 |
-
normalized_bbox_targets[isnotnan, :self.code_size],
|
| 358 |
-
bbox_weights[isnotnan, :self.code_size],
|
| 359 |
-
avg_factor=num_total_pos)
|
| 360 |
-
|
| 361 |
-
loss_cls = torch.nan_to_num(loss_cls)
|
| 362 |
-
loss_bbox = torch.nan_to_num(loss_bbox)
|
| 363 |
-
return loss_cls, loss_bbox
|
| 364 |
-
|
| 365 |
-
# original loss()
|
| 366 |
-
def loss_by_feat(
|
| 367 |
-
self,
|
| 368 |
-
batch_gt_instances_3d: InstanceList,
|
| 369 |
-
preds_dicts: Dict[str, Tensor],
|
| 370 |
-
batch_gt_instances_3d_ignore: OptInstanceList = None) -> Dict:
|
| 371 |
-
"""Compute loss of the head.
|
| 372 |
-
|
| 373 |
-
Args:
|
| 374 |
-
batch_gt_instances_3d (list[:obj:`InstanceData`]): Batch of
|
| 375 |
-
gt_instance_3d. It usually includes ``bboxes_3d``、`
|
| 376 |
-
`labels_3d``、``depths``、``centers_2d`` and attributes.
|
| 377 |
-
gt_instance. It usually includes ``bboxes``、``labels``.
|
| 378 |
-
batch_gt_instances_3d_ignore (list[:obj:`InstanceData`], Optional):
|
| 379 |
-
NOT supported.
|
| 380 |
-
Defaults to None.
|
| 381 |
-
|
| 382 |
-
Returns:
|
| 383 |
-
dict[str, Tensor]: A dictionary of loss components.
|
| 384 |
-
"""
|
| 385 |
-
assert batch_gt_instances_3d_ignore is None, \
|
| 386 |
-
f'{self.__class__.__name__} only supports ' \
|
| 387 |
-
f'for batch_gt_instances_3d_ignore setting to None.'
|
| 388 |
-
all_cls_scores = preds_dicts[
|
| 389 |
-
'all_cls_scores'] # num_dec,bs,num_q,num_cls
|
| 390 |
-
all_bbox_preds = preds_dicts['all_bbox_preds'] # num_dec,bs,num_q,10
|
| 391 |
-
enc_cls_scores = preds_dicts['enc_cls_scores']
|
| 392 |
-
enc_bbox_preds = preds_dicts['enc_bbox_preds']
|
| 393 |
-
|
| 394 |
-
# calculate loss for each decoder layer
|
| 395 |
-
num_dec_layers = len(all_cls_scores)
|
| 396 |
-
batch_gt_instances_3d_list = [
|
| 397 |
-
batch_gt_instances_3d for _ in range(num_dec_layers)
|
| 398 |
-
]
|
| 399 |
-
losses_cls, losses_bbox = multi_apply(self.loss_by_feat_single,
|
| 400 |
-
all_cls_scores, all_bbox_preds,
|
| 401 |
-
batch_gt_instances_3d_list)
|
| 402 |
-
|
| 403 |
-
loss_dict = dict()
|
| 404 |
-
# loss of proposal generated from encode feature map.
|
| 405 |
-
if enc_cls_scores is not None:
|
| 406 |
-
enc_loss_cls, enc_losses_bbox = self.loss_by_feat_single(
|
| 407 |
-
enc_cls_scores, enc_bbox_preds, batch_gt_instances_3d_list)
|
| 408 |
-
loss_dict['enc_loss_cls'] = enc_loss_cls
|
| 409 |
-
loss_dict['enc_loss_bbox'] = enc_losses_bbox
|
| 410 |
-
|
| 411 |
-
# loss from the last decoder layer
|
| 412 |
-
loss_dict['loss_cls'] = losses_cls[-1]
|
| 413 |
-
loss_dict['loss_bbox'] = losses_bbox[-1]
|
| 414 |
-
|
| 415 |
-
# loss from other decoder layers
|
| 416 |
-
num_dec_layer = 0
|
| 417 |
-
for loss_cls_i, loss_bbox_i in zip(losses_cls[:-1], losses_bbox[:-1]):
|
| 418 |
-
loss_dict[f'd{num_dec_layer}.loss_cls'] = loss_cls_i
|
| 419 |
-
loss_dict[f'd{num_dec_layer}.loss_bbox'] = loss_bbox_i
|
| 420 |
-
num_dec_layer += 1
|
| 421 |
-
return loss_dict
|
| 422 |
-
|
| 423 |
-
def predict_by_feat(self,
|
| 424 |
-
preds_dicts,
|
| 425 |
-
img_metas,
|
| 426 |
-
rescale=False) -> InstanceList:
|
| 427 |
-
"""Transform network output for a batch into bbox predictions.
|
| 428 |
-
|
| 429 |
-
Args:
|
| 430 |
-
preds_dicts (Dict[str, Tensor]):
|
| 431 |
-
-all_cls_scores (Tensor): Outputs from the classification head,
|
| 432 |
-
shape [nb_dec, bs, num_query, cls_out_channels]. Note
|
| 433 |
-
cls_out_channels should includes background.
|
| 434 |
-
-all_bbox_preds (Tensor): Sigmoid outputs from the regression
|
| 435 |
-
head with normalized coordinate format
|
| 436 |
-
(cx, cy, l, w, cz, h, rot_sine, rot_cosine, v_x, v_y).
|
| 437 |
-
Shape [nb_dec, bs, num_query, 10].
|
| 438 |
-
batch_img_metas (list[dict]): Meta information of each image, e.g.,
|
| 439 |
-
image size, scaling factor, etc.
|
| 440 |
-
rescale (bool): If True, return boxes in original image space.
|
| 441 |
-
Defaults to False.
|
| 442 |
-
|
| 443 |
-
Returns:
|
| 444 |
-
list[:obj:`InstanceData`]: Object detection results of each image
|
| 445 |
-
after the post process. Each item usually contains following keys.
|
| 446 |
-
|
| 447 |
-
- scores_3d (Tensor): Classification scores, has a shape
|
| 448 |
-
(num_instance, )
|
| 449 |
-
- labels_3d (Tensor): Labels of bboxes, has a shape
|
| 450 |
-
(num_instances, ).
|
| 451 |
-
- bboxes_3d (Tensor): Contains a tensor with shape
|
| 452 |
-
(num_instances, C), where C >= 7.
|
| 453 |
-
"""
|
| 454 |
-
# sinθ & cosθ ---> θ
|
| 455 |
-
preds_dicts = self.bbox_coder.decode(preds_dicts)
|
| 456 |
-
num_samples = len(preds_dicts) # batch size
|
| 457 |
-
ret_list = []
|
| 458 |
-
for i in range(num_samples):
|
| 459 |
-
results = InstanceData()
|
| 460 |
-
preds = preds_dicts[i]
|
| 461 |
-
bboxes = preds['bboxes']
|
| 462 |
-
bboxes[:, 2] = bboxes[:, 2] - bboxes[:, 5] * 0.5
|
| 463 |
-
bboxes = img_metas[i]['box_type_3d'](bboxes, self.code_size - 1)
|
| 464 |
-
|
| 465 |
-
results.bboxes_3d = bboxes
|
| 466 |
-
results.scores_3d = preds['scores']
|
| 467 |
-
results.labels_3d = preds['labels']
|
| 468 |
-
ret_list.append(results)
|
| 469 |
-
return ret_list
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|