CLIPasso / models /painter_params.py
yael-vinker
a
3c149ed
import random
import CLIP_.clip as clip
import numpy as np
import pydiffvg
import sketch_utils as utils
import torch
import torch.nn as nn
import torch.nn.functional as F
from PIL import Image
from scipy.ndimage.filters import gaussian_filter
from skimage.color import rgb2gray
from skimage.filters import threshold_otsu
from torchvision import transforms
class Painter(torch.nn.Module):
def __init__(self, args,
num_strokes=4,
num_segments=4,
imsize=224,
device=None,
target_im=None,
mask=None):
super(Painter, self).__init__()
self.args = args
self.num_paths = num_strokes
self.num_segments = num_segments
self.width = args.width
self.control_points_per_seg = args.control_points_per_seg
self.opacity_optim = args.force_sparse
self.num_stages = args.num_stages
self.add_random_noise = "noise" in args.augemntations
self.noise_thresh = args.noise_thresh
self.softmax_temp = args.softmax_temp
self.shapes = []
self.shape_groups = []
self.device = device
self.canvas_width, self.canvas_height = imsize, imsize
self.points_vars = []
self.color_vars = []
self.color_vars_threshold = args.color_vars_threshold
self.path_svg = args.path_svg
self.strokes_per_stage = self.num_paths
self.optimize_flag = []
# attention related for strokes initialisation
self.attention_init = args.attention_init
self.target_path = args.target
self.saliency_model = args.saliency_model
self.xdog_intersec = args.xdog_intersec
self.mask_object = args.mask_object_attention
self.text_target = args.text_target # for clip gradients
self.saliency_clip_model = args.saliency_clip_model
self.define_attention_input(target_im)
self.mask = mask
self.attention_map = self.set_attention_map() if self.attention_init else None
self.thresh = self.set_attention_threshold_map() if self.attention_init else None
self.strokes_counter = 0 # counts the number of calls to "get_path"
self.epoch = 0
self.final_epoch = args.num_iter - 1
def init_image(self, stage=0):
if stage > 0:
# if multi stages training than add new strokes on existing ones
# don't optimize on previous strokes
self.optimize_flag = [False for i in range(len(self.shapes))]
for i in range(self.strokes_per_stage):
stroke_color = torch.tensor([0.0, 0.0, 0.0, 1.0])
path = self.get_path()
self.shapes.append(path)
path_group = pydiffvg.ShapeGroup(shape_ids = torch.tensor([len(self.shapes) - 1]),
fill_color = None,
stroke_color = stroke_color)
self.shape_groups.append(path_group)
self.optimize_flag.append(True)
else:
num_paths_exists = 0
if self.path_svg != "none":
self.canvas_width, self.canvas_height, self.shapes, self.shape_groups = utils.load_svg(self.path_svg)
# if you want to add more strokes to existing ones and optimize on all of them
num_paths_exists = len(self.shapes)
for i in range(num_paths_exists, self.num_paths):
stroke_color = torch.tensor([0.0, 0.0, 0.0, 1.0])
path = self.get_path()
self.shapes.append(path)
path_group = pydiffvg.ShapeGroup(shape_ids = torch.tensor([len(self.shapes) - 1]),
fill_color = None,
stroke_color = stroke_color)
self.shape_groups.append(path_group)
self.optimize_flag = [True for i in range(len(self.shapes))]
img = self.render_warp()
img = img[:, :, 3:4] * img[:, :, :3] + torch.ones(img.shape[0], img.shape[1], 3, device = self.device) * (1 - img[:, :, 3:4])
img = img[:, :, :3]
# Convert img from HWC to NCHW
img = img.unsqueeze(0)
img = img.permute(0, 3, 1, 2).to(self.device) # NHWC -> NCHW
return img
# utils.imwrite(img.cpu(), '{}/init.png'.format(args.output_dir), gamma=args.gamma, use_wandb=args.use_wandb, wandb_name="init")
def get_image(self):
img = self.render_warp()
opacity = img[:, :, 3:4]
img = opacity * img[:, :, :3] + torch.ones(img.shape[0], img.shape[1], 3, device = self.device) * (1 - opacity)
img = img[:, :, :3]
# Convert img from HWC to NCHW
img = img.unsqueeze(0)
img = img.permute(0, 3, 1, 2).to(self.device) # NHWC -> NCHW
return img
def get_path(self):
points = []
self.num_control_points = torch.zeros(self.num_segments, dtype = torch.int32) + (self.control_points_per_seg - 2)
p0 = self.inds_normalised[self.strokes_counter] if self.attention_init else (random.random(), random.random())
points.append(p0)
for j in range(self.num_segments):
radius = 0.05
for k in range(self.control_points_per_seg - 1):
p1 = (p0[0] + radius * (random.random() - 0.5), p0[1] + radius * (random.random() - 0.5))
points.append(p1)
p0 = p1
points = torch.tensor(points).to(self.device)
points[:, 0] *= self.canvas_width
points[:, 1] *= self.canvas_height
path = pydiffvg.Path(num_control_points = self.num_control_points,
points = points,
stroke_width = torch.tensor(self.width),
is_closed = False)
self.strokes_counter += 1
return path
def render_warp(self):
if self.opacity_optim:
for group in self.shape_groups:
group.stroke_color.data[:3].clamp_(0., 0.) # to force black stroke
group.stroke_color.data[-1].clamp_(0., 1.) # opacity
# group.stroke_color.data[-1] = (group.stroke_color.data[-1] >= self.color_vars_threshold).float()
_render = pydiffvg.RenderFunction.apply
# uncomment if you want to add random noise
if self.add_random_noise:
if random.random() > self.noise_thresh:
eps = 0.01 * min(self.canvas_width, self.canvas_height)
for path in self.shapes:
path.points.data.add_(eps * torch.randn_like(path.points))
scene_args = pydiffvg.RenderFunction.serialize_scene(\
self.canvas_width, self.canvas_height, self.shapes, self.shape_groups)
img = _render(self.canvas_width, # width
self.canvas_height, # height
2, # num_samples_x
2, # num_samples_y
0, # seed
None,
*scene_args)
return img
def parameters(self):
self.points_vars = []
# storkes' location optimization
for i, path in enumerate(self.shapes):
if self.optimize_flag[i]:
path.points.requires_grad = True
self.points_vars.append(path.points)
return self.points_vars
def get_points_parans(self):
return self.points_vars
def set_color_parameters(self):
# for storkes' color optimization (opacity)
self.color_vars = []
for i, group in enumerate(self.shape_groups):
if self.optimize_flag[i]:
group.stroke_color.requires_grad = True
self.color_vars.append(group.stroke_color)
return self.color_vars
def get_color_parameters(self):
return self.color_vars
def save_svg(self, output_dir, name):
pydiffvg.save_svg('{}/{}.svg'.format(output_dir, name), self.canvas_width, self.canvas_height, self.shapes, self.shape_groups)
def dino_attn(self):
patch_size=8 # dino hyperparameter
threshold=0.6
# for dino model
mean_imagenet = torch.Tensor([0.485, 0.456, 0.406])[None,:,None,None].to(self.device)
std_imagenet = torch.Tensor([0.229, 0.224, 0.225])[None,:,None,None].to(self.device)
totens = transforms.Compose([
transforms.Resize((self.canvas_height, self.canvas_width)),
transforms.ToTensor()
])
dino_model = torch.hub.load('facebookresearch/dino:main', 'dino_vits8').eval().to(self.device)
self.main_im = Image.open(self.target_path).convert("RGB")
main_im_tensor = totens(self.main_im).to(self.device)
img = (main_im_tensor.unsqueeze(0) - mean_imagenet) / std_imagenet
w_featmap = img.shape[-2] // patch_size
h_featmap = img.shape[-1] // patch_size
with torch.no_grad():
attn = dino_model.get_last_selfattention(img).detach().cpu()[0]
nh = attn.shape[0]
attn = attn[:,0,1:].reshape(nh,-1)
val, idx = torch.sort(attn)
val /= torch.sum(val, dim=1, keepdim=True)
cumval = torch.cumsum(val, dim=1)
th_attn = cumval > (1 - threshold)
idx2 = torch.argsort(idx)
for head in range(nh):
th_attn[head] = th_attn[head][idx2[head]]
th_attn = th_attn.reshape(nh, w_featmap, h_featmap).float()
th_attn = nn.functional.interpolate(th_attn.unsqueeze(0), scale_factor=patch_size, mode="nearest")[0].cpu()
attn = attn.reshape(nh, w_featmap, h_featmap).float()
attn = nn.functional.interpolate(attn.unsqueeze(0), scale_factor=patch_size, mode="nearest")[0].cpu()
return attn
def define_attention_input(self, target_im):
model, preprocess = clip.load(self.saliency_clip_model, device=self.device, jit=False)
model.eval().to(self.device)
data_transforms = transforms.Compose([
preprocess.transforms[-1],
])
self.image_input_attn_clip = data_transforms(target_im).to(self.device)
def clip_attn(self):
model, preprocess = clip.load(self.saliency_clip_model, device=self.device, jit=False)
model.eval().to(self.device)
text_input = clip.tokenize([self.text_target]).to(self.device)
if "RN" in self.saliency_clip_model:
saliency_layer = "layer4"
attn_map = gradCAM(
model.visual,
self.image_input_attn_clip,
model.encode_text(text_input).float(),
getattr(model.visual, saliency_layer)
)
attn_map = attn_map.squeeze().detach().cpu().numpy()
attn_map = (attn_map - attn_map.min()) / (attn_map.max() - attn_map.min())
else:
# attn_map = interpret(self.image_input_attn_clip, text_input, model, device=self.device, index=0).astype(np.float32)
attn_map = interpret(self.image_input_attn_clip, text_input, model, device=self.device)
del model
return attn_map
def set_attention_map(self):
assert self.saliency_model in ["dino", "clip"]
if self.saliency_model == "dino":
return self.dino_attn()
elif self.saliency_model == "clip":
return self.clip_attn()
def softmax(self, x, tau=0.2):
e_x = np.exp(x / tau)
return e_x / e_x.sum()
def set_inds_clip(self):
attn_map = (self.attention_map - self.attention_map.min()) / (self.attention_map.max() - self.attention_map.min())
if self.xdog_intersec:
xdog = XDoG_()
im_xdog = xdog(self.image_input_attn_clip[0].permute(1,2,0).cpu().numpy(), k=10)
intersec_map = (1 - im_xdog) * attn_map
attn_map = intersec_map
attn_map_soft = np.copy(attn_map)
attn_map_soft[attn_map > 0] = self.softmax(attn_map[attn_map > 0], tau=self.softmax_temp)
k = self.num_stages * self.num_paths
self.inds = np.random.choice(range(attn_map.flatten().shape[0]), size=k, replace=False, p=attn_map_soft.flatten())
self.inds = np.array(np.unravel_index(self.inds, attn_map.shape)).T
self.inds_normalised = np.zeros(self.inds.shape)
self.inds_normalised[:, 0] = self.inds[:, 1] / self.canvas_width
self.inds_normalised[:, 1] = self.inds[:, 0] / self.canvas_height
self.inds_normalised = self.inds_normalised.tolist()
return attn_map_soft
def set_inds_dino(self):
k = max(3, (self.num_stages * self.num_paths) // 6 + 1) # sample top 3 three points from each attention head
num_heads = self.attention_map.shape[0]
self.inds = np.zeros((k * num_heads, 2))
# "thresh" is used for visualisaiton purposes only
thresh = torch.zeros(num_heads + 1, self.attention_map.shape[1], self.attention_map.shape[2])
softmax = nn.Softmax(dim=1)
for i in range(num_heads):
# replace "self.attention_map[i]" with "self.attention_map" to get the highest values among
# all heads.
topk, indices = np.unique(self.attention_map[i].numpy(), return_index=True)
topk = topk[::-1][:k]
cur_attn_map = self.attention_map[i].numpy()
# prob function for uniform sampling
prob = cur_attn_map.flatten()
prob[prob > topk[-1]] = 1
prob[prob <= topk[-1]] = 0
prob = prob / prob.sum()
thresh[i] = torch.Tensor(prob.reshape(cur_attn_map.shape))
# choose k pixels from each head
inds = np.random.choice(range(cur_attn_map.flatten().shape[0]), size=k, replace=False, p=prob)
inds = np.unravel_index(inds, cur_attn_map.shape)
self.inds[i * k: i * k + k, 0] = inds[0]
self.inds[i * k: i * k + k, 1] = inds[1]
# for visualisaiton
sum_attn = self.attention_map.sum(0).numpy()
mask = np.zeros(sum_attn.shape)
mask[thresh[:-1].sum(0) > 0] = 1
sum_attn = sum_attn * mask
sum_attn = sum_attn / sum_attn.sum()
thresh[-1] = torch.Tensor(sum_attn)
# sample num_paths from the chosen pixels.
prob_sum = sum_attn[self.inds[:,0].astype(np.int), self.inds[:,1].astype(np.int)]
prob_sum = prob_sum / prob_sum.sum()
new_inds = []
for i in range(self.num_stages):
new_inds.extend(np.random.choice(range(self.inds.shape[0]), size=self.num_paths, replace=False, p=prob_sum))
self.inds = self.inds[new_inds]
print("self.inds",self.inds.shape)
self.inds_normalised = np.zeros(self.inds.shape)
self.inds_normalised[:, 0] = self.inds[:, 1] / self.canvas_width
self.inds_normalised[:, 1] = self.inds[:, 0] / self.canvas_height
self.inds_normalised = self.inds_normalised.tolist()
return thresh
def set_attention_threshold_map(self):
assert self.saliency_model in ["dino", "clip"]
if self.saliency_model == "dino":
return self.set_inds_dino()
elif self.saliency_model == "clip":
return self.set_inds_clip()
def get_attn(self):
return self.attention_map
def get_thresh(self):
return self.thresh
def get_inds(self):
return self.inds
def get_mask(self):
return self.mask
def set_random_noise(self, epoch):
if epoch % self.args.save_interval == 0:
self.add_random_noise = False
else:
self.add_random_noise = "noise" in self.args.augemntations
class PainterOptimizer:
def __init__(self, args, renderer):
self.renderer = renderer
self.points_lr = args.lr
self.color_lr = args.color_lr
self.args = args
self.optim_color = args.force_sparse
def init_optimizers(self):
self.points_optim = torch.optim.Adam(self.renderer.parameters(), lr=self.points_lr)
if self.optim_color:
self.color_optim = torch.optim.Adam(self.renderer.set_color_parameters(), lr=self.color_lr)
def update_lr(self, counter):
new_lr = utils.get_epoch_lr(counter, self.args)
for param_group in self.points_optim.param_groups:
param_group["lr"] = new_lr
def zero_grad_(self):
self.points_optim.zero_grad()
if self.optim_color:
self.color_optim.zero_grad()
def step_(self):
self.points_optim.step()
if self.optim_color:
self.color_optim.step()
def get_lr(self):
return self.points_optim.param_groups[0]['lr']
class Hook:
"""Attaches to a module and records its activations and gradients."""
def __init__(self, module: nn.Module):
self.data = None
self.hook = module.register_forward_hook(self.save_grad)
def save_grad(self, module, input, output):
self.data = output
output.requires_grad_(True)
output.retain_grad()
def __enter__(self):
return self
def __exit__(self, exc_type, exc_value, exc_traceback):
self.hook.remove()
@property
def activation(self) -> torch.Tensor:
return self.data
@property
def gradient(self) -> torch.Tensor:
return self.data.grad
def interpret(image, texts, model, device):
images = image.repeat(1, 1, 1, 1)
res = model.encode_image(images)
model.zero_grad()
image_attn_blocks = list(dict(model.visual.transformer.resblocks.named_children()).values())
num_tokens = image_attn_blocks[0].attn_probs.shape[-1]
R = torch.eye(num_tokens, num_tokens, dtype=image_attn_blocks[0].attn_probs.dtype).to(device)
R = R.unsqueeze(0).expand(1, num_tokens, num_tokens)
cams = [] # there are 12 attention blocks
for i, blk in enumerate(image_attn_blocks):
cam = blk.attn_probs.detach() #attn_probs shape is 12, 50, 50
# each patch is 7x7 so we have 49 pixels + 1 for positional encoding
cam = cam.reshape(1, -1, cam.shape[-1], cam.shape[-1])
cam = cam.clamp(min=0)
cam = cam.clamp(min=0).mean(dim=1) # mean of the 12 something
cams.append(cam)
R = R + torch.bmm(cam, R)
cams_avg = torch.cat(cams) # 12, 50, 50
cams_avg = cams_avg[:, 0, 1:] # 12, 1, 49
image_relevance = cams_avg.mean(dim=0).unsqueeze(0)
image_relevance = image_relevance.reshape(1, 1, 7, 7)
image_relevance = torch.nn.functional.interpolate(image_relevance, size=224, mode='bicubic')
image_relevance = image_relevance.reshape(224, 224).data.cpu().numpy().astype(np.float32)
image_relevance = (image_relevance - image_relevance.min()) / (image_relevance.max() - image_relevance.min())
return image_relevance
# Reference: https://arxiv.org/abs/1610.02391
def gradCAM(
model: nn.Module,
input: torch.Tensor,
target: torch.Tensor,
layer: nn.Module
) -> torch.Tensor:
# Zero out any gradients at the input.
if input.grad is not None:
input.grad.data.zero_()
# Disable gradient settings.
requires_grad = {}
for name, param in model.named_parameters():
requires_grad[name] = param.requires_grad
param.requires_grad_(False)
# Attach a hook to the model at the desired layer.
assert isinstance(layer, nn.Module)
with Hook(layer) as hook:
# Do a forward and backward pass.
output = model(input)
output.backward(target)
grad = hook.gradient.float()
act = hook.activation.float()
# Global average pool gradient across spatial dimension
# to obtain importance weights.
alpha = grad.mean(dim=(2, 3), keepdim=True)
# Weighted combination of activation maps over channel
# dimension.
gradcam = torch.sum(act * alpha, dim=1, keepdim=True)
# We only want neurons with positive influence so we
# clamp any negative ones.
gradcam = torch.clamp(gradcam, min=0)
# Resize gradcam to input resolution.
gradcam = F.interpolate(
gradcam,
input.shape[2:],
mode='bicubic',
align_corners=False)
# Restore gradient settings.
for name, param in model.named_parameters():
param.requires_grad_(requires_grad[name])
return gradcam
class XDoG_(object):
def __init__(self):
super(XDoG_, self).__init__()
self.gamma=0.98
self.phi=200
self.eps=-0.1
self.sigma=0.8
self.binarize=True
def __call__(self, im, k=10):
if im.shape[2] == 3:
im = rgb2gray(im)
imf1 = gaussian_filter(im, self.sigma)
imf2 = gaussian_filter(im, self.sigma * k)
imdiff = imf1 - self.gamma * imf2
imdiff = (imdiff < self.eps) * 1.0 + (imdiff >= self.eps) * (1.0 + np.tanh(self.phi * imdiff))
imdiff -= imdiff.min()
imdiff /= imdiff.max()
if self.binarize:
th = threshold_otsu(imdiff)
imdiff = imdiff >= th
imdiff = imdiff.astype('float32')
return imdiff