yadongxie's picture
chore: try default key
6e9cbe5
raw
history blame
7.18 kB
import gradio as gr
import numpy as np
import io
from pydub import AudioSegment
import tempfile
import openai
import time
from dataclasses import dataclass, field
from threading import Lock
import base64
import uuid
import os
@dataclass
class AppState:
stream: np.ndarray | None = None
sampling_rate: int = 0
pause_detected: bool = False
conversation: list = field(default_factory=list)
client: openai.OpenAI = None
output_format: str = "mp3"
stopped: bool = False
# Global lock for thread safety
state_lock = Lock()
def create_client(api_key):
return openai.OpenAI(
base_url="https://llama3-1-8b.lepton.run/api/v1/", api_key=api_key
)
def determine_pause(audio, sampling_rate, state):
# Take the last 1 second of audio
pause_length = int(sampling_rate * 1) # 1 second
if len(audio) < pause_length:
return False
last_audio = audio[-pause_length:]
amplitude = np.abs(last_audio)
# Calculate the average amplitude in the last 1 second
avg_amplitude = np.mean(amplitude)
silence_threshold = 0.01 # Adjust this threshold as needed
if avg_amplitude < silence_threshold:
return True
else:
return False
def process_audio(audio: tuple, state: AppState):
if state.stream is None:
state.stream = audio[1]
state.sampling_rate = audio[0]
else:
state.stream = np.concatenate((state.stream, audio[1]))
pause_detected = determine_pause(state.stream, state.sampling_rate, state)
state.pause_detected = pause_detected
if state.pause_detected:
return gr.Audio(recording=False), state
else:
return None, state
def update_or_append_conversation(conversation, id, role, new_content):
for entry in conversation:
if entry["id"] == id and entry["role"] == role:
entry["content"] = new_content
return
conversation.append({"id": id, "role": role, "content": new_content})
def generate_response_and_audio(audio_bytes: bytes, state: AppState):
if state.client is None:
raise gr.Error("Please enter a valid API key first.")
format_ = state.output_format
bitrate = 128 if format_ == "mp3" else 32 # Higher bitrate for MP3, lower for OPUS
audio_data = base64.b64encode(audio_bytes).decode()
old_messages = []
for item in state.conversation:
old_messages.append({"role": item["role"], "content": item["content"]})
old_messages.append(
{"role": "user", "content": [{"type": "audio", "data": audio_data}]}
)
try:
stream = state.client.chat.completions.create(
extra_body={
"require_audio": True,
"tts_preset_id": "jessica",
"tts_audio_format": format_,
"tts_audio_bitrate": bitrate,
},
model="llama3.1-8b",
messages=old_messages,
temperature=0.7,
max_tokens=256,
stream=True,
)
full_response = ""
asr_result = ""
audios = []
id = uuid.uuid4()
for chunk in stream:
if not chunk.choices:
continue
content = chunk.choices[0].delta.content
audio = getattr(chunk.choices[0], "audio", [])
asr_results = getattr(chunk.choices[0], "asr_results", [])
if asr_results:
asr_result += "".join(asr_results)
yield id, full_response, asr_result, None, state
if content:
full_response += content
yield id, full_response, asr_result, None, state
if audio:
audios.extend(audio)
final_audio = b"".join([base64.b64decode(a) for a in audios])
yield id, full_response, asr_result, final_audio, state
except Exception as e:
raise gr.Error(f"Error during audio streaming: {e}")
def response(state: AppState):
if state.stream is None or len(state.stream) == 0:
return None, None, state
audio_buffer = io.BytesIO()
segment = AudioSegment(
state.stream.tobytes(),
frame_rate=state.sampling_rate,
sample_width=state.stream.dtype.itemsize,
channels=(1 if len(state.stream.shape) == 1 else state.stream.shape[1]),
)
segment.export(audio_buffer, format="wav")
generator = generate_response_and_audio(audio_buffer.getvalue(), state)
for id, text, asr, audio, updated_state in generator:
state = updated_state
if asr:
update_or_append_conversation(state.conversation, id, "user", asr)
if text:
update_or_append_conversation(state.conversation, id, "assistant", text)
chatbot_output = state.conversation
yield chatbot_output, audio, state
# Reset the audio stream for the next interaction
state.stream = None
state.pause_detected = False
def set_api_key(api_key, state):
try:
state.client = create_client(os.getenv("API_KEY"))
return gr.update(value="API key set successfully!", visible=True), state
except Exception as e:
return gr.update(value="Connection error", visible=True), state
with gr.Blocks() as demo:
gr.Markdown("# Lepton AI LLM Voice Mode")
gr.Markdown(
"You can find Lepton AI serverless endpoint API Key at [here](https://dashboard.lepton.ai/workspace-redirect/settings/api-tokens)"
)
with gr.Row():
with gr.Column(scale=3):
api_key_input = gr.Textbox(
type="password",
placeholder="Enter your Lepton API Key",
show_label=False,
container=False,
)
with gr.Column(scale=1):
set_key_button = gr.Button("Set API Key", scale=2, variant="primary")
api_key_status = gr.Textbox(
show_label=False, container=False, interactive=False, visible=False
)
with gr.Blocks():
with gr.Row():
input_audio = gr.Audio(
label="Input Audio", sources="microphone", type="numpy"
)
output_audio = gr.Audio(label="Output Audio", autoplay=True)
chatbot = gr.Chatbot(label="Conversation", type="messages")
cancel = gr.Button("Stop Conversation", variant="stop")
state = gr.State(AppState())
set_key_button.click(
set_api_key,
inputs=[api_key_input, state],
outputs=[api_key_status, state],
)
stream = input_audio.stream(
process_audio,
[input_audio, state],
[input_audio, state],
stream_every=0.25, # Reduced to make it more responsive
time_limit=60, # Increased to allow for longer messages
)
respond = input_audio.stop_recording(
response, [state], [chatbot, output_audio, state]
)
# Update the chatbot with the final conversation
respond.then(lambda s: s.conversation, [state], [chatbot])
# Add a "Stop Conversation" button
cancel.click(
lambda: (AppState(stopped=True), gr.Audio(recording=False)),
None,
[state, input_audio],
cancels=[respond],
)
demo.launch()