|
import math |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
import models |
|
from models.base import BaseModel |
|
from models.utils import chunk_batch |
|
from systems.utils import update_module_step |
|
from nerfacc import ContractionType, OccupancyGrid, ray_marching, render_weight_from_density, accumulate_along_rays |
|
|
|
|
|
@models.register('nerf') |
|
class NeRFModel(BaseModel): |
|
def setup(self): |
|
self.geometry = models.make(self.config.geometry.name, self.config.geometry) |
|
self.texture = models.make(self.config.texture.name, self.config.texture) |
|
self.register_buffer('scene_aabb', torch.as_tensor([-self.config.radius, -self.config.radius, -self.config.radius, self.config.radius, self.config.radius, self.config.radius], dtype=torch.float32)) |
|
|
|
if self.config.learned_background: |
|
self.occupancy_grid_res = 256 |
|
self.near_plane, self.far_plane = 0.2, 1e4 |
|
self.cone_angle = 10**(math.log10(self.far_plane) / self.config.num_samples_per_ray) - 1. |
|
self.render_step_size = 0.01 |
|
self.contraction_type = ContractionType.UN_BOUNDED_SPHERE |
|
else: |
|
self.occupancy_grid_res = 128 |
|
self.near_plane, self.far_plane = None, None |
|
self.cone_angle = 0.0 |
|
self.render_step_size = 1.732 * 2 * self.config.radius / self.config.num_samples_per_ray |
|
self.contraction_type = ContractionType.AABB |
|
|
|
self.geometry.contraction_type = self.contraction_type |
|
|
|
if self.config.grid_prune: |
|
self.occupancy_grid = OccupancyGrid( |
|
roi_aabb=self.scene_aabb, |
|
resolution=self.occupancy_grid_res, |
|
contraction_type=self.contraction_type |
|
) |
|
self.randomized = self.config.randomized |
|
self.background_color = None |
|
|
|
def update_step(self, epoch, global_step): |
|
update_module_step(self.geometry, epoch, global_step) |
|
update_module_step(self.texture, epoch, global_step) |
|
|
|
def occ_eval_fn(x): |
|
density, _ = self.geometry(x) |
|
|
|
return density[...,None] * self.render_step_size |
|
|
|
if self.training and self.config.grid_prune: |
|
self.occupancy_grid.every_n_step(step=global_step, occ_eval_fn=occ_eval_fn) |
|
|
|
def isosurface(self): |
|
mesh = self.geometry.isosurface() |
|
return mesh |
|
|
|
def forward_(self, rays): |
|
n_rays = rays.shape[0] |
|
rays_o, rays_d = rays[:, 0:3], rays[:, 3:6] |
|
|
|
def sigma_fn(t_starts, t_ends, ray_indices): |
|
ray_indices = ray_indices.long() |
|
t_origins = rays_o[ray_indices] |
|
t_dirs = rays_d[ray_indices] |
|
positions = t_origins + t_dirs * (t_starts + t_ends) / 2. |
|
density, _ = self.geometry(positions) |
|
return density[...,None] |
|
|
|
def rgb_sigma_fn(t_starts, t_ends, ray_indices): |
|
ray_indices = ray_indices.long() |
|
t_origins = rays_o[ray_indices] |
|
t_dirs = rays_d[ray_indices] |
|
positions = t_origins + t_dirs * (t_starts + t_ends) / 2. |
|
density, feature = self.geometry(positions) |
|
rgb = self.texture(feature, t_dirs) |
|
return rgb, density[...,None] |
|
|
|
with torch.no_grad(): |
|
ray_indices, t_starts, t_ends = ray_marching( |
|
rays_o, rays_d, |
|
scene_aabb=None if self.config.learned_background else self.scene_aabb, |
|
grid=self.occupancy_grid if self.config.grid_prune else None, |
|
sigma_fn=sigma_fn, |
|
near_plane=self.near_plane, far_plane=self.far_plane, |
|
render_step_size=self.render_step_size, |
|
stratified=self.randomized, |
|
cone_angle=self.cone_angle, |
|
alpha_thre=0.0 |
|
) |
|
|
|
ray_indices = ray_indices.long() |
|
t_origins = rays_o[ray_indices] |
|
t_dirs = rays_d[ray_indices] |
|
midpoints = (t_starts + t_ends) / 2. |
|
positions = t_origins + t_dirs * midpoints |
|
intervals = t_ends - t_starts |
|
|
|
density, feature = self.geometry(positions) |
|
rgb = self.texture(feature, t_dirs) |
|
|
|
weights = render_weight_from_density(t_starts, t_ends, density[...,None], ray_indices=ray_indices, n_rays=n_rays) |
|
opacity = accumulate_along_rays(weights, ray_indices, values=None, n_rays=n_rays) |
|
depth = accumulate_along_rays(weights, ray_indices, values=midpoints, n_rays=n_rays) |
|
comp_rgb = accumulate_along_rays(weights, ray_indices, values=rgb, n_rays=n_rays) |
|
comp_rgb = comp_rgb + self.background_color * (1.0 - opacity) |
|
|
|
out = { |
|
'comp_rgb': comp_rgb, |
|
'opacity': opacity, |
|
'depth': depth, |
|
'rays_valid': opacity > 0, |
|
'num_samples': torch.as_tensor([len(t_starts)], dtype=torch.int32, device=rays.device) |
|
} |
|
|
|
if self.training: |
|
out.update({ |
|
'weights': weights.view(-1), |
|
'points': midpoints.view(-1), |
|
'intervals': intervals.view(-1), |
|
'ray_indices': ray_indices.view(-1) |
|
}) |
|
|
|
return out |
|
|
|
def forward(self, rays): |
|
if self.training: |
|
out = self.forward_(rays) |
|
else: |
|
out = chunk_batch(self.forward_, self.config.ray_chunk, True, rays) |
|
return { |
|
**out, |
|
} |
|
|
|
def train(self, mode=True): |
|
self.randomized = mode and self.config.randomized |
|
return super().train(mode=mode) |
|
|
|
def eval(self): |
|
self.randomized = False |
|
return super().eval() |
|
|
|
def regularizations(self, out): |
|
losses = {} |
|
losses.update(self.geometry.regularizations(out)) |
|
losses.update(self.texture.regularizations(out)) |
|
return losses |
|
|
|
@torch.no_grad() |
|
def export(self, export_config): |
|
mesh = self.isosurface() |
|
if export_config.export_vertex_color: |
|
_, feature = chunk_batch(self.geometry, export_config.chunk_size, False, mesh['v_pos'].to(self.rank)) |
|
viewdirs = torch.zeros(feature.shape[0], 3).to(feature) |
|
viewdirs[...,2] = -1. |
|
rgb = self.texture(feature, viewdirs).clamp(0,1) |
|
mesh['v_rgb'] = rgb.cpu() |
|
return mesh |
|
|