meow
Add application file
ab2adfb
raw
history blame
3.42 kB
import numpy as np
# import gradio as gr
import os
import tempfile
import shutil
from trainer import Trainer
def predict(input_text, model_type):
if model_type in ['lstm', 'bilstm']:
predicted_label = trainer.predict(input_text )
elif model_type == 'max_ent':
predicted_label = trainer.predict_maxent(input_text)
elif model_type == 'svm':
predicted_label = trainer.predict_svm(input_text)
return str(predicted_label)
# pass
def predict_omni(input_text, model_type):
predicted_label_net = trainer.predict(input_text )
predicted_label_maxent = trainer_maxent.predict_maxent(input_text )
predicted_label_svm = trainer_svm.predict_svm(input_text )
# if model_type in ['lstm', 'bilstm']:
# predicted_label = trainer.predict(input_text )
# elif model_type == 'max_ent':
# predicted_label = trainer.predict_maxent(input_text)
# elif model_type == 'svm':
# predicted_label = trainer.predict_svm(input_text)
predicted_text = f"LSTM: {predicted_label_net}, Max Ent: {predicted_label_maxent}, SVM: {predicted_label_svm}"
return predicted_text
# pass
def create_demo():
USAGE = """## Text Classification
"""
with gr.Blocks() as demo:
gr.Markdown(USAGE)
# demo =
# gr.Interface(
# predict,
# # gr.Dataframe(type="numpy", datatype="number", row_count=5, col_count=3),
# gr.File(type="filepath"),
# gr.File(type="filepath"),
# cache_examples=False
# )
input_file = gr.File(type="filepath")
output_file = gr.File(type="filepath")
gr.Interface(fn=greet, inputs="textbox", outputs="textbox")
# gr.Interface(
# predict,
# # gr.Dataframe(type="numpy", datatype="number", row_count=5, col_count=3),
# input_file,
# output_file,
# cache_examples=False
# )
# inputs = input_file
# outputs = output_file
# gr.Examples(
# examples=[os.path.join(os.path.dirname(__file__), "./gradio_inter/20231104_017.pkl")],
# inputs=inputs,
# fn=predict,
# outputs=outputs,
# )
return demo
if __name__ == "__main__":
vocab_size = 8000
sequence_len = 150
# batch_size = 1024
batch_size = 256
nn_epochs = 20
model_type = "lstm"
# model_type = "bilstm"
# model_type = "max_ent"
# trainer = Trainer(vocab_size, sequence_len, batch_size, nn_epochs, model_type)
# print(f"Trainer loaded")
model_type = "lstm"
trainer = Trainer(vocab_size, sequence_len, batch_size, nn_epochs, model_type)
model_type = "max_ent"
trainer_maxent = Trainer(vocab_size, sequence_len, batch_size, nn_epochs, model_type)
model_type = "svm"
trainer_svm = Trainer(vocab_size, sequence_len, batch_size, nn_epochs, model_type)
while True:
input_text = input()
# if model_type in ["lstm", "bilstm"]:
# label = predict(input_text, model_type)
label = predict_omni(input_text, model_type)
# elif model_type in ["max_ent"]:
# label =
print(label)
# demo = create_demo()
# demo.launch()
# python app_local.py