xymeow7's picture
Update app.py
8aa390f verified
raw
history blame
2.57 kB
import numpy as np
import gradio as gr
import os
import tempfile
import shutil
from trainer import Trainer
def predict(input_text):
predicted_label = trainer.predict(input_text )
return str(predicted_label)
# pass
def predict_maxent(input_text):
predicted_label = trainer_maxent.predict_maxent(input_text )
return str(predicted_label)
# pass
def predict_svm(input_text):
predicted_label = trainer_svm.predict_svm(input_text )
return str(predicted_label)
# pass
def create_demo():
USAGE = """## Text Classification
### Online demo for Artificial Intelligence Principles 2024 spring course project.
"""
with gr.Blocks() as demo:
gr.Markdown(USAGE)
# demo =
# gr.Interface(
# predict,
# # gr.Dataframe(type="numpy", datatype="number", row_count=5, col_count=3),
# gr.File(type="filepath"),
# gr.File(type="filepath"),
# cache_examples=False
# )
# input_file = gr.File(type="filepath")
# output_file = gr.File(type="filepath")
gr.Interface(fn=predict, inputs="textbox", outputs="textbox", title='LSTM')
gr.Interface(fn=predict_maxent, inputs="textbox", outputs="textbox", title='MaxEnt')
gr.Interface(fn=predict_svm, inputs="textbox", outputs="textbox", title='SVM')
# gr.Interface(
# predict,
# # gr.Dataframe(type="numpy", datatype="number", row_count=5, col_count=3),
# input_file,
# output_file,
# cache_examples=False
# )
# inputs = input_file
# outputs = output_file
# gr.Examples(
# examples=[os.path.join(os.path.dirname(__file__), "./gradio_inter/20231104_017.pkl")],
# inputs=inputs,
# fn=predict,
# outputs=outputs,
# )
return demo
if __name__ == "__main__":
vocab_size = 8000
sequence_len = 150
# batch_size = 1024
batch_size = 256
nn_epochs = 20
model_type = "lstm"
# model_type = "bilstm"
trainer = Trainer(vocab_size, sequence_len, batch_size, nn_epochs, model_type)
model_type = "max_ent"
trainer_maxent = Trainer(vocab_size, sequence_len, batch_size, nn_epochs, model_type)
model_type = "svm"
trainer_svm = Trainer(vocab_size, sequence_len, batch_size, nn_epochs, model_type)
demo = create_demo()
demo.launch()