Spaces:
Running
Running
import math | |
# import torch | |
# from ..utils import Timer | |
import numpy as np | |
# import torch.nn.functional as F | |
import os | |
import argparse | |
from xml.etree.ElementTree import ElementTree | |
import trimesh | |
import torch | |
import torch.nn as nn | |
# import List | |
# class link; joint; body | |
### | |
## calculate transformation to the frame ## | |
## the joint idx ## | |
##### th_cuda_idx ##### | |
# name to the main axis? # | |
# def get_body_name_to_main_axis() | |
# another one is just getting the joint offset positions? | |
# and after the revolute transformation # # all revolute joint points #### | |
def get_body_name_to_main_axis(): | |
# negative y; positive x # | |
body_name_to_main_axis = { | |
"body2": -2, "body6": 1, "body10": 1, "body14": 1, "body17": 1 | |
} | |
return body_name_to_main_axis ## get the body name to main axis ## | |
## insert one | |
def plane_rotation_matrix_from_angle_xz(angle): | |
## angle of | |
sin_ = torch.sin(angle) | |
cos_ = torch.cos(angle) | |
zero_padding = torch.zeros_like(cos_) | |
one_padding = torch.ones_like(cos_) | |
col_a = torch.stack( | |
[cos_, zero_padding, sin_], dim=0 | |
) | |
col_b = torch.stack( | |
[zero_padding, one_padding, zero_padding], dim=0 | |
) | |
col_c = torch.stack( | |
[-1. * sin_, zero_padding, cos_], dim=0 | |
) | |
rot_mtx = torch.stack( | |
[col_a, col_b, col_c], dim=-1 | |
) | |
# col_a = torch.stack( | |
# [cos_, sin_], dim=0 ### col of the rotation matrix | |
# ) | |
# col_b = torch.stack( | |
# [-1. * sin_, cos_], dim=0 ## cols of the rotation matrix | |
# ) | |
# rot_mtx = torch.stack( | |
# [col_a, col_b], dim=-1 ### rotation matrix | |
# ) | |
return rot_mtx | |
def plane_rotation_matrix_from_angle(angle): | |
## angle of | |
sin_ = torch.sin(angle) | |
cos_ = torch.cos(angle) | |
col_a = torch.stack( | |
[cos_, sin_], dim=0 ### col of the rotation matrix | |
) | |
col_b = torch.stack( | |
[-1. * sin_, cos_], dim=0 ## cols of the rotation matrix | |
) | |
rot_mtx = torch.stack( | |
[col_a, col_b], dim=-1 ### rotation matrix | |
) | |
return rot_mtx | |
def rotation_matrix_from_axis_angle(axis, angle): # rotation_matrix_from_axis_angle -> | |
# sin_ = np.sin(angle) # ti.math.sin(angle) | |
# cos_ = np.cos(angle) # ti.math.cos(angle) | |
sin_ = torch.sin(angle) # ti.math.sin(angle) | |
cos_ = torch.cos(angle) # ti.math.cos(angle) | |
u_x, u_y, u_z = axis[0], axis[1], axis[2] | |
u_xx = u_x * u_x | |
u_yy = u_y * u_y | |
u_zz = u_z * u_z | |
u_xy = u_x * u_y | |
u_xz = u_x * u_z | |
u_yz = u_y * u_z ## | |
# rot_mtx = np.stack( | |
# [np.array([cos_ + u_xx * (1 - cos_), u_xy * (1. - cos_) + u_z * sin_, u_xz * (1. - cos_) - u_y * sin_], dtype=np.float32), | |
# np.array([u_xy * (1. - cos_) - u_z * sin_, cos_ + u_yy * (1. - cos_), u_yz * (1. - cos_) + u_x * sin_], dtype=np.float32), | |
# np.array([u_xz * (1. - cos_) + u_y * sin_, u_yz * (1. - cos_) - u_x * sin_, cos_ + u_zz * (1. - cos_)], dtype=np.float32) | |
# ], axis=-1 ### np stack | |
# ) ## a single | |
# rot_mtx = torch.stack( | |
# [ | |
# torch.tensor([cos_ + u_xx * (1 - cos_), u_xy * (1. - cos_) + u_z * sin_, u_xz * (1. - cos_) - u_y * sin_], dtype=torch.float32), | |
# torch.tensor([u_xy * (1. - cos_) - u_z * sin_, cos_ + u_yy * (1. - cos_), u_yz * (1. - cos_) + u_x * sin_], dtype=torch.float32), | |
# torch.tensor([u_xz * (1. - cos_) + u_y * sin_, u_yz * (1. - cos_) - u_x * sin_, cos_ + u_zz * (1. - cos_)], dtype=torch.float32) | |
# ], dim=-1 ## stack those torch tensors ## | |
# ) | |
row_a = torch.stack( | |
[cos_ + u_xx * (1 - cos_), u_xy * (1. - cos_) + u_z * sin_, u_xz * (1. - cos_) - u_y * sin_], dim=0 | |
) | |
# print(f"row_a: {row_a.size()}") | |
row_b = torch.stack( | |
[u_xy * (1. - cos_) - u_z * sin_, cos_ + u_yy * (1. - cos_), u_yz * (1. - cos_) + u_x * sin_], dim=0 | |
) | |
# print(f"row_b: {row_b.size()}") | |
row_c = torch.stack( | |
[u_xz * (1. - cos_) + u_y * sin_, u_yz * (1. - cos_) - u_x * sin_, cos_ + u_zz * (1. - cos_)], dim=0 | |
) | |
# print(f"row_c: {row_c.size()}") | |
### rot_mtx for the rot_mtx ### | |
rot_mtx = torch.stack( | |
[row_a, row_b, row_c], dim=-1 ### rot_matrix of he matrix ## | |
) | |
# rot_mtx = torch.stack( | |
# [ | |
# torch.tensor([cos_ + u_xx * (1 - cos_), u_xy * (1. - cos_) + u_z * sin_, u_xz * (1. - cos_) - u_y * sin_], dtype=torch.float32), | |
# torch.tensor([u_xy * (1. - cos_) - u_z * sin_, cos_ + u_yy * (1. - cos_), u_yz * (1. - cos_) + u_x * sin_], dtype=torch.float32), | |
# torch.tensor([u_xz * (1. - cos_) + u_y * sin_, u_yz * (1. - cos_) - u_x * sin_, cos_ + u_zz * (1. - cos_)], dtype=torch.float32) | |
# ], dim=-1 ## stack those torch tensors ## | |
# ) | |
# rot_mtx_numpy = rot_mtx.to_numpy() | |
# rot_mtx_at_rot_mtx = rot_mtx @ rot_mtx.transpose() | |
# print(rot_mtx_at_rot_mtx) | |
return rot_mtx | |
## joint name = "joint3" ## | |
# <joint name="joint3" type="revolute" axis="0.000000 0.000000 -1.000000" pos="4.689700 -4.425000 0.000000" quat="1 0 0 0" frame="WORLD" damping="1e7"/> | |
class Joint: | |
def __init__(self, name, joint_type, axis, pos, quat, frame, damping, args) -> None: | |
self.name = name | |
self.type = joint_type | |
self.axis = axis | |
self.pos = pos | |
self.quat = quat | |
self.frame = frame | |
self.damping = damping | |
self.args = args | |
#### TODO: the dimension of the state vector ? #### | |
# self.state = 0. ## parameter | |
self.state = nn.Parameter( | |
torch.zeros((1,), dtype=torch.float32, requires_grad=True).cuda(self.args.th_cuda_idx), requires_grad=True | |
) | |
# self.rot_mtx = np.eye(3, dtypes=np.float32) | |
# self.trans_vec = np.zeros((3,), dtype=np.float32) ## rot m | |
self.rot_mtx = nn.Parameter(torch.eye(n=3, dtype=torch.float32, requires_grad=True).cuda(self.args.th_cuda_idx), requires_grad=True) | |
self.trans_vec = nn.Parameter(torch.zeros((3,), dtype=torch.float32, requires_grad=True).cuda(self.args.th_cuda_idx), requires_grad=True) | |
# self.rot_mtx = np.eye(3, dtype=np.float32) | |
# self.trans_vec = np.zeros((3,), dtype=np.float32) | |
self.axis_rot_mtx = torch.tensor( | |
[ | |
[1, 0, 0], [0, -1, 0], [0, 0, -1] | |
], dtype=torch.float32 | |
).cuda(self.args.th_cuda_idx) | |
self.joint_idx = -1 | |
self.transformed_joint_pts = self.pos.clone() | |
def print_grads(self, ): | |
print(f"rot_mtx: {self.rot_mtx.grad}") | |
print(f"trans_vec: {self.trans_vec.grad}") | |
def clear_grads(self,): | |
if self.rot_mtx.grad is not None: | |
self.rot_mtx.grad.data = self.rot_mtx.grad.data * 0. | |
if self.trans_vec.grad is not None: | |
self.trans_vec.grad.data = self.trans_vec.grad.data * 0. | |
def compute_transformation(self,): | |
# use the state to transform them # # transform # ## transform the state ## | |
# use the state to transform them # # transform them for the state # | |
if self.type == "revolute": | |
# print(f"computing transformation matrices with axis: {self.axis}, state: {self.state}") | |
# rotation matrix from the axis angle # | |
rot_mtx = rotation_matrix_from_axis_angle(self.axis, self.state) | |
# rot_mtx(p - p_v) + p_v -> rot_mtx p - rot_mtx p_v + p_v | |
# trans_vec = self.pos - np.matmul(rot_mtx, self.pos.reshape(3, 1)).reshape(3) | |
# self.rot_mtx = np.copy(rot_mtx) | |
# self.trans_vec = np.copy(trans_vec) | |
trans_vec = self.pos - torch.matmul(rot_mtx, self.pos.view(3, 1)).view(3).contiguous() | |
self.rot_mtx = rot_mtx | |
self.trans_vec = trans_vec | |
else: | |
### TODO: implement transformations for joints in other types ### | |
pass | |
def set_state(self, name_to_state): | |
if self.name in name_to_state: | |
# self.state = name_to_state["name"] | |
self.state = name_to_state[self.name] ## | |
def set_state_via_vec(self, state_vec): ### transform points via the state vectors here ### | |
if self.joint_idx >= 0: | |
self.state = state_vec[self.joint_idx] ## give the parameter to the parameters ## | |
def set_joint_idx(self, joint_name_to_idx): | |
if self.name in joint_name_to_idx: | |
self.joint_idx = joint_name_to_idx[self.name] | |
def set_args(self, args): | |
self.args = args | |
def compute_transformation_via_state_vals(self, state_vals): | |
if self.joint_idx >= 0: | |
cur_joint_state = state_vals[self.joint_idx] | |
else: | |
cur_joint_state = self.state | |
# use the state to transform them # # transform # ## transform the state ## | |
# use the state to transform them # # transform them for the state # | |
if self.type == "revolute": | |
# print(f"computing transformation matrices with axis: {self.axis}, state: {self.state}") | |
# rotation matrix from the axis angle # | |
rot_mtx = rotation_matrix_from_axis_angle(self.axis, cur_joint_state) | |
# rot_mtx(p - p_v) + p_v -> rot_mtx p - rot_mtx p_v + p_v | |
# trans_vec = self.pos - np.matmul(rot_mtx, self.pos.reshape(3, 1)).reshape(3) | |
# self.rot_mtx = np.copy(rot_mtx) | |
# self.trans_vec = np.copy(trans_vec) | |
trans_vec = self.pos - torch.matmul(rot_mtx, self.pos.view(3, 1)).view(3).contiguous() | |
self.rot_mtx = rot_mtx | |
self.trans_vec = trans_vec | |
elif self.type == "free2d": | |
cur_joint_state = state_vals # still only for the current scene # | |
# cur_joint_state | |
cur_joint_rot_val = state_vals[2] | |
### rot_mtx ### ### rot_mtx ### | |
rot_mtx = plane_rotation_matrix_from_angle_xz(cur_joint_rot_val) | |
# rot_mtx = plane_rotation_matrix_from_angle(cur_joint_rot_val) ### 2 x 2 rot matrix # | |
# cur joint rot val # | |
# rot mtx of the rotation | |
# xy_val = | |
# axis_rot_mtx | |
# R_axis^T ( R R_axis (p) + trans (with the y-axis padded) ) | |
cur_trans_vec = torch.stack( | |
[state_vals[0], torch.zeros_like(state_vals[0]), state_vals[1]], dim=0 | |
) | |
# cur_trans_vec # | |
rot_mtx = torch.matmul(self.axis_rot_mtx.transpose(1, 0), torch.matmul(rot_mtx, self.axis_rot_mtx)) | |
trans_vec = torch.matmul(self.axis_rot_mtx.transpose(1, 0), cur_trans_vec.unsqueeze(-1).contiguous()).squeeze(-1).contiguous() + self.pos | |
self.rot_mtx = rot_mtx | |
self.trans_vec = trans_vec ## rot_mtx and trans_vec # | |
else: | |
### TODO: implement transformations for joints in other types ### | |
pass | |
return self.rot_mtx, self.trans_vec | |
def transform_joints_via_parent_rot_trans_infos(self, parent_rot_mtx, parent_trans_vec): | |
# | |
# if self.type == "revolute" or self.type == "free2d": | |
transformed_joint_pts = torch.matmul(parent_rot_mtx, self.pos.view(3 ,1).contiguous()).view(3).contiguous() + parent_trans_vec | |
# else: | |
self.transformed_joint_pts = transformed_joint_pts ### get self transformed joint pts here ### | |
return transformed_joint_pts | |
# if self.joint_idx >= 0: | |
# cur_joint_state = state_vals[self.joint_idx] | |
# else: | |
# cur_joint_state = self.state # state # | |
# # use the state to transform them # # transform ### transform the state ## | |
# # use the state to transform them # # transform them for the state # transform for the state # | |
# if self.type == "revolute": | |
# # print(f"computing transformation matrices with axis: {self.axis}, state: {self.state}") | |
# # rotation matrix from the axis angle # | |
# rot_mtx = rotation_matrix_from_axis_angle(self.axis, cur_joint_state) | |
# # rot_mtx(p - p_v) + p_v -> rot_mtx p - rot_mtx p_v + p_v | |
# # trans_vec = self.pos - np.matmul(rot_mtx, self.pos.reshape(3, 1)).reshape(3) | |
# # self.rot_mtx = np.copy(rot_mtx) | |
# # self.trans_vec = np.copy(trans_vec) | |
# trans_vec = self.pos - torch.matmul(rot_mtx, self.pos.view(3, 1)).view(3).contiguous() | |
# self.rot_mtx = rot_mtx | |
# self.trans_vec = trans_vec | |
# elif self.type == "free2d": | |
# cur_joint_state = state_vals # still only for the current scene # | |
# # cur_joint_state | |
# cur_joint_rot_val = state_vals[2] | |
# ### rot_mtx ### ### rot_mtx ### | |
# rot_mtx = plane_rotation_matrix_from_angle_xz(cur_joint_rot_val) | |
# # rot_mtx = plane_rotation_matrix_from_angle(cur_joint_rot_val) ### 2 x 2 rot matrix # | |
# # cur joint rot val # | |
# # rot mtx of the rotation | |
# # xy_val = | |
# # axis_rot_mtx | |
# # R_axis^T ( R R_axis (p) + trans (with the y-axis padded) ) | |
# cur_trans_vec = torch.stack( | |
# [state_vals[0], torch.zeros_like(state_vals[0]), state_vals[1]], dim=0 | |
# ) | |
# # cur_trans_vec # | |
# rot_mtx = torch.matmul(self.axis_rot_mtx.transpose(1, 0), torch.matmul(rot_mtx, self.axis_rot_mtx)) | |
# trans_vec = torch.matmul(self.axis_rot_mtx.transpose(1, 0), cur_trans_vec.unsqueeze(-1).contiguous()).squeeze(-1).contiguous() + self.pos | |
# self.rot_mtx = rot_mtx | |
# self.trans_vec = trans_vec ## rot_mtx and trans_vec # | |
# else: | |
# ### TODO: implement transformations for joints in other types ### | |
# pass | |
# return self.rot_mtx, self.trans_vec | |
## fixed joint -> translation and rotation ## | |
## revolute joint -> can be actuated ## | |
## set states and compute the transfromations in a top-to-down manner ## | |
## trnasform the robot -> a list of qs ## | |
## a list of qs ## | |
## transform from the root of the robot; pass qs from the root to the leaf node ## | |
## visual meshes or visual meshes from the basic description of robots ## | |
## visual meshes; or visual points ## | |
## visual meshes -> transform them into the visual density values here ## | |
## visual meshes -> transform them into the ## into the visual counterparts ## | |
## ## visual meshes -> ## ## ## | |
# <body name="body0" type="mesh" filename="hand/body0.obj" pos="0 0 0" quat="1 0 0 0" transform_type="OBJ_TO_WORLD" density="1" mu="0" rgba="0.700000 0.700000 0.700000 1"/> | |
class Body: | |
def __init__(self, name, body_type, filename, pos, quat, transform_type, density, mu, rgba, radius, args) -> None: | |
self.name = name | |
self.body_type = body_type | |
### for mesh object ### | |
self.filename = filename | |
self.args = args | |
self.pos = pos | |
self.quat = quat | |
self.transform_type = transform_type | |
self.density = density | |
self.mu = mu | |
self.rgba = rgba | |
### for sphere object ### | |
self.radius = radius | |
## or vertices here # | |
## pass them to the child and treat them as the parent transformation ## | |
self.visual_pts_ref = None | |
self.visual_faces_ref = None | |
self.visual_pts = None ## visual pts and | |
self.body_name_to_main_axis = get_body_name_to_main_axis() ### get the body name to main axis here # | |
self.get_visual_counterparts() | |
def update_radius(self,): | |
self.radius.data = self.radius.data - self.radius.grad.data | |
self.radius.grad.data = self.radius.grad.data * 0. | |
def update_xml_file(self,): | |
xml_content_with_flexible_radius = f"""<redmax model="hand"> | |
<!-- 1) change the damping value here? --> | |
<!-- 2) change the center of mass --> | |
<option integrator="BDF2" timestep="0.01" gravity="0. 0. -0.000098"/> | |
<ground pos="0 0 -10" normal="0 0 1"/> | |
<default> | |
<general_primitive_contact kn="1e6" kt="1e3" mu="0.8" damping="3e1" /> | |
</default> | |
<robot> | |
<link name="link0"> | |
<joint name="joint0" type="fixed" pos="0 0 0" quat="1 0 0 0" frame="WORLD"/> | |
<body name="body0" type="mesh" filename="hand/body0.obj" pos="0 0 0" quat="1 0 0 0" transform_type="OBJ_TO_WORLD" density="1" mu="0" rgba="0.700000 0.700000 0.700000 1"/> | |
<link name="link1"> | |
<joint name="joint1" type="revolute" axis="0.000000 0.000000 -1.000000" pos="-3.300000 -5.689700 0.000000" quat="1 0 0 0" frame="WORLD" damping="1e4"/> | |
<body name="body1" type="mesh" filename="hand/body1.obj" pos="0 0 0" quat="1 0 0 0" transform_type="OBJ_TO_WORLD" density="1" mu="0" rgba="0.600000 0.600000 0.600000 1"/> | |
<link name="link2"> | |
<joint name="joint2" type="revolute" axis="1.000000 0.000000 0.000000" pos="-3.300000 -7.680000 0.000000" quat="1 0 0 0" frame="WORLD" damping="1e4"/> | |
<body name="body2" type="mesh" filename="hand/body2.obj" pos="0 0 0" quat="1 0 0 0" transform_type="OBJ_TO_WORLD" density="1" mu="0" rgba="0.500000 0.500000 0.500000 1"/> | |
</link> | |
</link> | |
<link name="link3"> | |
<!-- revolute joint --> | |
<joint name="joint3" type="revolute" axis="0.000000 0.000000 -1.000000" pos="4.689700 -4.425000 0.000000" quat="1 0 0 0" frame="WORLD" damping="1e4"/> | |
<body name="body3" type="mesh" filename="hand/body3.obj" pos="0 0 0" quat="1 0 0 0" transform_type="OBJ_TO_WORLD" density="1" mu="0" rgba="0.600000 0.600000 0.600000 1"/> | |
<link name="link4"> | |
<joint name="joint4" type="revolute" axis="0.000000 1.000000 0.000000" pos="6.680000 -4.425000 0.000000" quat="1 0 0 0" frame="WORLD" damping="1e4"/> | |
<body name="body4" type="mesh" filename="hand/body4.obj" pos="0 0 0" quat="1 0 0 0" transform_type="OBJ_TO_WORLD" density="1" mu="0" rgba="0.500000 0.500000 0.500000 1"/> | |
<link name="link5"> | |
<joint name="joint5" type="revolute" axis="0.000000 1.000000 0.000000" pos="11.080000 -4.425000 0.000000" quat="1 0 0 0" frame="WORLD" damping="1e4"/> | |
<body name="body5" type="mesh" filename="hand/body5.obj" pos="0 0 0" quat="1 0 0 0" transform_type="OBJ_TO_WORLD" density="1" mu="0" rgba="0.400000 0.400000 0.400000 1"/> | |
<link name="link6"> | |
<joint name="joint6" type="revolute" axis="0.000000 1.000000 0.000000" pos="15.480000 -4.425000 0.000000" quat="1 0 0 0" frame="WORLD" damping="1e4"/> | |
<body name="body6" type="mesh" filename="hand/body6.obj" pos="0 0 0" quat="1 0 0 0" transform_type="OBJ_TO_WORLD" density="1" mu="0" rgba="0.300000 0.300000 0.300000 1"/> | |
</link> | |
</link> | |
</link> | |
</link> | |
<link name="link7"> | |
<joint name="joint7" type="revolute" axis="0.000000 0.000000 -1.000000" pos="4.689700 -1.475000 0.000000" quat="1 0 0 0" frame="WORLD" damping="1e4"/> | |
<body name="body7" type="mesh" filename="hand/body7.obj" pos="0 0 0" quat="1 0 0 0" transform_type="OBJ_TO_WORLD" density="1" mu="0" rgba="0.600000 0.600000 0.600000 1"/> | |
<link name="link8"> | |
<joint name="joint8" type="revolute" axis="0.000000 1.000000 0.000000" pos="6.680000 -1.475000 0.000000" quat="1 0 0 0" frame="WORLD" damping="1e4"/> | |
<body name="body8" type="mesh" filename="hand/body8.obj" pos="0 0 0" quat="1 0 0 0" transform_type="OBJ_TO_WORLD" density="1" mu="0" rgba="0.500000 0.500000 0.500000 1"/> | |
<link name="link9"> | |
<joint name="joint9" type="revolute" axis="0.000000 1.000000 0.000000" pos="11.080000 -1.475000 0.000000" quat="1 0 0 0" frame="WORLD" damping="1e4"/> | |
<body name="body9" type="mesh" filename="hand/body9.obj" pos="0 0 0" quat="1 0 0 0" transform_type="OBJ_TO_WORLD" density="1" mu="0" rgba="0.400000 0.400000 0.400000 1"/> | |
<link name="link10"> | |
<joint name="joint10" type="revolute" axis="0.000000 1.000000 0.000000" pos="15.480000 -1.475000 0.000000" quat="1 0 0 0" frame="WORLD" damping="1e4"/> | |
<body name="body10" type="mesh" filename="hand/body10.obj" pos="0 0 0" quat="1 0 0 0" transform_type="OBJ_TO_WORLD" density="1" mu="0" rgba="0.300000 0.300000 0.300000 1"/> | |
</link> | |
</link> | |
</link> | |
</link> | |
<link name="link11"> | |
<joint name="joint11" type="revolute" axis="0.000000 0.000000 -1.000000" pos="4.689700 1.475000 0.000000" quat="1 0 0 0" frame="WORLD" damping="1e4"/> | |
<body name="body11" type="mesh" filename="hand/body11.obj" pos="0 0 0" quat="1 0 0 0" transform_type="OBJ_TO_WORLD" density="1" mu="0" rgba="0.600000 0.600000 0.600000 1"/> | |
<link name="link12"> | |
<joint name="joint12" type="revolute" axis="0.000000 1.000000 0.000000" pos="6.680000 1.475000 0.000000" quat="1 0 0 0" frame="WORLD" damping="1e4"/> | |
<body name="body12" type="mesh" filename="hand/body12.obj" pos="0 0 0" quat="1 0 0 0" transform_type="OBJ_TO_WORLD" density="1" mu="0" rgba="0.500000 0.500000 0.500000 1"/> | |
<link name="link13"> | |
<joint name="joint13" type="revolute" axis="0.000000 1.000000 0.000000" pos="11.080000 1.475000 0.000000" quat="1 0 0 0" frame="WORLD" damping="1e4"/> | |
<body name="body13" type="mesh" filename="hand/body13.obj" pos="0 0 0" quat="1 0 0 0" transform_type="OBJ_TO_WORLD" density="1" mu="0" rgba="0.400000 0.400000 0.400000 1"/> | |
<link name="link14"> | |
<joint name="joint14" type="revolute" axis="0.000000 1.000000 0.000000" pos="15.480000 1.475000 0.000000" quat="1 0 0 0" frame="WORLD" damping="1e4"/> | |
<body name="body14" type="mesh" filename="hand/body14.obj" pos="0 0 0" quat="1 0 0 0" transform_type="OBJ_TO_WORLD" density="1" mu="0" rgba="0.300000 0.300000 0.300000 1"/> | |
</link> | |
</link> | |
</link> | |
</link> | |
<link name="link15"> | |
<joint name="joint15" type="revolute" axis="0.000000 0.000000 -1.000000" pos="4.689700 4.425000 0.000000" quat="1 0 0 0" frame="WORLD" damping="1e4"/> | |
<body name="body15" type="mesh" filename="hand/body15.obj" pos="0 0 0" quat="1 0 0 0" transform_type="OBJ_TO_WORLD" density="1" mu="0" rgba="0.600000 0.600000 0.600000 1"/> | |
<link name="link16"> | |
<joint name="joint16" type="revolute" axis="0.000000 1.000000 0.000000" pos="6.680000 4.425000 0.000000" quat="1 0 0 0" frame="WORLD" damping="1e4"/> | |
<body name="body16" type="mesh" filename="hand/body16.obj" pos="0 0 0" quat="1 0 0 0" transform_type="OBJ_TO_WORLD" density="1" mu="0" rgba="0.500000 0.500000 0.500000 1"/> | |
<link name="link17"> | |
<joint name="joint17" type="revolute" axis="0.000000 1.000000 0.000000" pos="11.080000 4.425000 0.000000" quat="1 0 0 0" frame="WORLD" damping="1e4"/> | |
<body name="body17" type="mesh" filename="hand/body17.obj" pos="0 0 0" quat="1 0 0 0" transform_type="OBJ_TO_WORLD" density="1" mu="0" rgba="0.400000 0.400000 0.400000 1"/> | |
</link> | |
</link> | |
</link> | |
</link> | |
</robot> | |
<robot> | |
<link name="sphere"> | |
<joint name="sphere" type="free2d" pos = "10. 0.0 3.5" quat="1 -1 0 0" format="LOCAL" damping="0"/> | |
<body name="sphere" type="sphere" radius="{self.radius[0].detach().cpu().item()}" pos="0 0 0" quat="1 0 0 0" density="0.5" mu="0" texture="resources/textures/sphere.jpg"/> | |
</link> | |
</robot> | |
<contact> | |
<ground_contact body="sphere" kn="1e6" kt="1e3" mu="0.8" damping="3e1"/> | |
<general_primitive_contact general_body="body0" primitive_body="sphere"/> | |
<general_primitive_contact general_body="body1" primitive_body="sphere"/> | |
<general_primitive_contact general_body="body2" primitive_body="sphere"/> | |
<general_primitive_contact general_body="body3" primitive_body="sphere"/> | |
<general_primitive_contact general_body="body4" primitive_body="sphere"/> | |
<general_primitive_contact general_body="body5" primitive_body="sphere"/> | |
<general_primitive_contact general_body="body6" primitive_body="sphere"/> | |
<general_primitive_contact general_body="body7" primitive_body="sphere"/> | |
<general_primitive_contact general_body="body8" primitive_body="sphere"/> | |
<general_primitive_contact general_body="body9" primitive_body="sphere"/> | |
<general_primitive_contact general_body="body10" primitive_body="sphere"/> | |
<general_primitive_contact general_body="body11" primitive_body="sphere"/> | |
<general_primitive_contact general_body="body12" primitive_body="sphere"/> | |
<general_primitive_contact general_body="body13" primitive_body="sphere"/> | |
<general_primitive_contact general_body="body14" primitive_body="sphere"/> | |
<general_primitive_contact general_body="body15" primitive_body="sphere"/> | |
<general_primitive_contact general_body="body16" primitive_body="sphere"/> | |
<general_primitive_contact general_body="body17" primitive_body="sphere"/> | |
</contact> | |
<actuator> | |
<motor joint="joint1" ctrl="force" ctrl_range="-3e5 3e5"/> | |
<motor joint="joint2" ctrl="force" ctrl_range="-3e5 3e5"/> | |
<motor joint="joint3" ctrl="force" ctrl_range="-3e5 3e5"/> | |
<motor joint="joint4" ctrl="force" ctrl_range="-3e5 3e5"/> | |
<motor joint="joint5" ctrl="force" ctrl_range="-3e5 3e5"/> | |
<motor joint="joint6" ctrl="force" ctrl_range="-3e5 3e5"/> | |
<motor joint="joint7" ctrl="force" ctrl_range="-3e5 3e5"/> | |
<motor joint="joint8" ctrl="force" ctrl_range="-3e5 3e5"/> | |
<motor joint="joint9" ctrl="force" ctrl_range="-3e5 3e5"/> | |
<motor joint="joint10" ctrl="force" ctrl_range="-3e5 3e5"/> | |
<motor joint="joint11" ctrl="force" ctrl_range="-3e5 3e5"/> | |
<motor joint="joint12" ctrl="force" ctrl_range="-3e5 3e5"/> | |
<motor joint="joint13" ctrl="force" ctrl_range="-3e5 3e5"/> | |
<motor joint="joint14" ctrl="force" ctrl_range="-3e5 3e5"/> | |
<motor joint="joint15" ctrl="force" ctrl_range="-3e5 3e5"/> | |
<motor joint="joint16" ctrl="force" ctrl_range="-3e5 3e5"/> | |
<motor joint="joint17" ctrl="force" ctrl_range="-3e5 3e5"/> | |
</actuator> | |
</redmax> | |
""" | |
xml_loading_fn = "/home/xueyi/diffsim/DiffHand/assets/hand_sphere_free_sphere_geo_test.xml" | |
with open(xml_loading_fn, "w") as wf: | |
wf.write(xml_content_with_flexible_radius) | |
wf.close() | |
### get visual pts colorrs ### ### | |
def get_visual_pts_colors(self, ): | |
tot_visual_pts_nn = self.visual_pts_ref.size(0) | |
# self.pts_rgba = [torch.from_numpy(self.rgba).float().cuda(self.args.th_cuda_idx) for _ in range(tot_visual_pts_nn)] # total visual pts nn | |
self.pts_rgba = [torch.tensor(self.rgba.data).cuda(self.args.th_cuda_idx) for _ in range(tot_visual_pts_nn)] # total visual pts nn skeletong | |
self.pts_rgba = torch.stack(self.pts_rgba, dim=0) # | |
return self.pts_rgba | |
def get_visual_counterparts(self,): | |
### TODO: implement this for visual counterparts ### mid line regression and name to body mapping relations --- for each body, how to calculate the midline and other properties? | |
######## get body type ########## get visual midline of the input mesh and the mesh vertices? ######## # skeleton of the hand -> 21 points ? retarget from this hand to the mano hand and use the mano hand priors? | |
if self.body_type == "sphere": | |
filename = "/home/xueyi/diffsim/DiffHand/examples/save_res/hand_sphere_demo/meshes/18.obj" | |
if not os.path.exists(filename): | |
filename = "/data/xueyi/diffsim/DiffHand/assets/18.obj" | |
else: | |
filename = self.filename | |
rt_asset_path = "/home/xueyi/diffsim/DiffHand/assets" ### assets folder ### | |
if not os.path.exists(rt_asset_path): | |
rt_asset_path = "/data/xueyi/diffsim/DiffHand/assets" | |
filename = os.path.join(rt_asset_path, filename) | |
body_mesh = trimesh.load(filename, process=False) | |
# verts = np.array(body_mesh.vertices) | |
# faces = np.array(body_mesh.faces, dtype=np.long) | |
# self.visual_pts_ref = np.copy(verts) ## verts ## | |
# self.visual_faces_ref = np.copy(faces) ## faces | |
# self.visual_pts_ref # | |
#### body_mesh.vertices #### | |
# verts = torch.tensor(body_mesh.vertices, dtype=torch.float32).cuda(self.args.th_cuda_idx) | |
# faces = torch.tensor(body_mesh.faces, dtype=torch.long).cuda(self.args.th_cuda_idx) | |
#### body_mesh.vertices #### | |
# self.pos = nn.Parameter( | |
# torch.tensor([0., 0., 0.], dtype=torch.float32, requires_grad=True).cuda(self.args.th_cuda_idx), requires_grad=True | |
# ) | |
self.pos = nn.Parameter( | |
torch.tensor(self.pos.detach().cpu().tolist(), dtype=torch.float32, requires_grad=True).cuda(self.args.th_cuda_idx), requires_grad=True | |
) | |
### Step 1 ### -> set the pos to the correct initial pose ### | |
self.radius = nn.Parameter( | |
torch.tensor([self.args.initial_radius], dtype=torch.float32, requires_grad=True).cuda(self.args.th_cuda_idx), requires_grad=True | |
) | |
### visual pts ref ### ## body_mesh.vertices -> # | |
self.visual_pts_ref = torch.tensor(body_mesh.vertices, dtype=torch.float32).cuda(self.args.th_cuda_idx) | |
# if self.name == "sphere": | |
# self.visual_pts_ref = self.visual_pts_ref / 2. # the initial radius | |
# self.visual_pts_ref = self.visual_pts_ref * self.radius ## multiple the initla radius # | |
# self.visual_pts_ref = nn.Parameter( | |
# torch.tensor(body_mesh.vertices, dtype=torch.float32, requires_grad=True).cuda(self.args.th_cuda_idx), requires_grad=True | |
# ) | |
# self.visual_faces_ref = nn.Parameter( | |
# torch.tensor(body_mesh.faces, dtype=torch.long, requires_grad=True).cuda(self.args.th_cuda_idx), requires_grad=True | |
# ) | |
self.visual_faces_ref = torch.tensor(body_mesh.faces, dtype=torch.long).cuda(self.args.th_cuda_idx) | |
# body_name_to_main_axis | |
# body_name_to_main_axis for the body_name_to_main_axis # | |
# visual_faces_ref # | |
# visual_pts_ref # | |
minn_pts, _ = torch.min(self.visual_pts_ref, dim=0) ### get the visual pts minn ### | |
maxx_pts, _ = torch.max(self.visual_pts_ref, dim=0) ### visual pts maxx ### | |
mean_pts = torch.mean(self.visual_pts_ref, dim=0) ### mean_pts of the mean_pts ### | |
if self.name in self.body_name_to_main_axis: | |
cur_main_axis = self.body_name_to_main_axis[self.name] ## get the body name ## | |
if cur_main_axis == -2: | |
main_axis_pts = minn_pts[1] # the main axis pts | |
full_main_axis_pts = torch.tensor([mean_pts[0], main_axis_pts, mean_pts[2]], dtype=torch.float32).cuda(self.args.th_cuda_idx) | |
elif cur_main_axis == 1: | |
main_axis_pts = maxx_pts[0] # the maxx axis pts | |
full_main_axis_pts = torch.tensor([main_axis_pts, mean_pts[1], mean_pts[2]], dtype=torch.float32).cuda(self.args.th_cuda_idx) | |
self.full_main_axis_pts_ref = full_main_axis_pts | |
else: | |
self.full_main_axis_pts_ref = mean_pts.clone() ### get the mean pts ### | |
# mean_pts | |
# main_axis_pts = | |
# self.visual_pts_ref = verts # | |
# self.visual_faces_ref = faces # | |
# get visual points colors # the color should be an optimizable property # # # or init visual point colors here ## # or init visual point colors here # | |
# simulatoable assets ## for the | |
def transform_visual_pts_ref(self,): | |
if self.name == "sphere": | |
visual_pts_ref = self.visual_pts_ref / 2. # | |
visual_pts_ref = visual_pts_ref * self.radius | |
else: | |
visual_pts_ref = self.visual_pts_ref | |
return visual_pts_ref | |
def transform_visual_pts(self, rot_mtx, trans_vec): | |
visual_pts_ref = self.transform_visual_pts_ref() | |
# rot_mtx: 3 x 3 numpy array | |
# trans_vec: 3 numpy array | |
# print(f"transforming body with rot_mtx: {rot_mtx} and trans_vec: {trans_vec}") | |
# self.visual_pts = np.matmul(rot_mtx, self.visual_pts_ref.T).T + trans_vec.reshape(1, 3) # reshape # | |
# print(f"rot_mtx: {rot_mtx}, trans_vec: {trans_vec}") | |
self.visual_pts = torch.matmul(rot_mtx, visual_pts_ref.transpose(1, 0)).transpose(1, 0) + trans_vec.unsqueeze(0) | |
# full_main_axis_pts -> | |
self.full_main_axis_pts = torch.matmul(rot_mtx, self.full_main_axis_pts_ref.unsqueeze(-1)).contiguous().squeeze(-1) + trans_vec | |
self.full_main_axis_pts = self.full_main_axis_pts.unsqueeze(0) | |
return self.visual_pts | |
def get_tot_transformed_joints(self, transformed_joints): | |
if self.name in self.body_name_to_main_axis: | |
transformed_joints.append(self.full_main_axis_pts) | |
return transformed_joints | |
def get_nn_pts(self,): | |
self.nn_pts = self.visual_pts_ref.size(0) | |
return self.nn_pts | |
def set_args(self, args): | |
self.args = args | |
def clear_grad(self, ): | |
if self.pos.grad is not None: | |
self.pos.grad.data = self.pos.grad.data * 0. | |
if self.radius.grad is not None: | |
self.radius.grad.data = self.radius.grad.data * 0. | |
# get the visual counterparts of the boyd mesh or elements # | |
# xyz attribute ## ## xyz attribute # | |
# use get_name_to_visual_pts | |
# use get_name_to_visual_pts_faces to get the transformed visual pts and faces # | |
class Link: | |
def __init__(self, name, joint: Joint, body: Body, children, args) -> None: | |
self.joint = joint | |
self.body = body | |
self.children = children | |
self.name = name | |
self.args = args | |
# joint # parent_rot_mtx, parent_trans_vec | |
self.parent_rot_mtx = nn.Parameter(torch.eye(n=3, dtype=torch.float32).cuda(self.args.th_cuda_idx), requires_grad=True) | |
self.parent_trans_vec = nn.Parameter(torch.zeros((3,), dtype=torch.float32).cuda(self.args.th_cuda_idx), requires_grad=True) | |
self.curr_rot_mtx = nn.Parameter(torch.eye(n=3, dtype=torch.float32).cuda(self.args.th_cuda_idx), requires_grad=True) | |
self.curr_trans_vec = nn.Parameter(torch.zeros((3,), dtype=torch.float32).cuda(self.args.th_cuda_idx), requires_grad=True) | |
# | |
self.tot_rot_mtx = nn.Parameter(torch.eye(n=3, dtype=torch.float32).cuda(self.args.th_cuda_idx), requires_grad=True) | |
self.tot_trans_vec = nn.Parameter(torch.zeros((3,), dtype=torch.float32).cuda(self.args.th_cuda_idx), requires_grad=True) ## torch zeros # | |
def print_grads(self, ): ### print grads here ### | |
print(f"parent_rot_mtx: {self.parent_rot_mtx.grad}") | |
print(f"parent_trans_vec: {self.parent_trans_vec.grad}") | |
print(f"curr_rot_mtx: {self.curr_rot_mtx.grad}") | |
print(f"curr_trans_vec: {self.curr_trans_vec.grad}") | |
print(f"tot_rot_mtx: {self.tot_rot_mtx.grad}") | |
print(f"tot_trans_vec: {self.tot_trans_vec.grad}") | |
print(f"Joint") | |
self.joint.print_grads() | |
for cur_link in self.children: | |
cur_link.print_grads() | |
def set_state(self, name_to_state): | |
self.joint.set_state(name_to_state=name_to_state) | |
for child_link in self.children: | |
child_link.set_state(name_to_state) | |
def set_state_via_vec(self, state_vec): # | |
self.joint.set_state_via_vec(state_vec) | |
for child_link in self.children: | |
child_link.set_state_via_vec(state_vec) | |
# if self.joint_idx >= 0: | |
# self.state = state_vec[self.joint_idx] | |
## | |
def get_tot_transformed_joints(self, transformed_joints): | |
cur_joint_transformed_pts = self.joint.transformed_joint_pts.unsqueeze(0) ### 3 pts | |
transformed_joints.append(cur_joint_transformed_pts) | |
transformed_joints = self.body.get_tot_transformed_joints(transformed_joints) | |
# if self.joint.name | |
for cur_link in self.children: | |
transformed_joints = cur_link.get_tot_transformed_joints(transformed_joints) | |
return transformed_joints | |
def compute_transformation_via_state_vecs(self, state_vals, parent_rot_mtx, parent_trans_vec, visual_pts_list): | |
# state vecs and rot mtx # state vecs ##### | |
joint_rot_mtx, joint_trans_vec = self.joint.compute_transformation_via_state_vals(state_vals=state_vals) | |
self.curr_rot_mtx = joint_rot_mtx | |
self.curr_trans_vec = joint_trans_vec | |
self.joint.transform_joints_via_parent_rot_trans_infos(parent_rot_mtx=parent_rot_mtx, parent_trans_vec=parent_trans_vec) ## get rot and trans mtx and vecs ### | |
tot_parent_rot_mtx = torch.matmul(parent_rot_mtx, joint_rot_mtx) | |
tot_parent_trans_vec = torch.matmul(parent_rot_mtx, joint_trans_vec.unsqueeze(-1)).view(3) + parent_trans_vec | |
self.tot_rot_mtx = tot_parent_rot_mtx | |
self.tot_trans_vec = tot_parent_trans_vec | |
# self.tot_rot_mtx = np.copy(tot_parent_rot_mtx) | |
# self.tot_trans_vec = np.copy(tot_parent_trans_vec) | |
### visual_pts_list for recording visual pts ### | |
cur_body_visual_pts = self.body.transform_visual_pts(rot_mtx=self.tot_rot_mtx, trans_vec=self.tot_trans_vec) | |
visual_pts_list.append(cur_body_visual_pts) | |
for cur_link in self.children: | |
# cur_link.parent_rot_mtx = np.copy(tot_parent_rot_mtx) ### set children parent rot mtx and the trans vec | |
# cur_link.parent_trans_vec = np.copy(tot_parent_trans_vec) ## | |
cur_link.parent_rot_mtx = tot_parent_rot_mtx ### set children parent rot mtx and the trans vec # | |
cur_link.parent_trans_vec = tot_parent_trans_vec ## | |
# cur_link.compute_transformation() ## compute self's transformations | |
cur_link.compute_transformation_via_state_vecs(state_vals, tot_parent_rot_mtx, tot_parent_trans_vec, visual_pts_list) | |
def get_visual_pts_rgba_values(self, pts_rgba_vals_list): | |
cur_body_visual_rgba_vals = self.body.get_visual_pts_colors() | |
pts_rgba_vals_list.append(cur_body_visual_rgba_vals) | |
for cur_link in self.children: | |
cur_link.get_visual_pts_rgba_values(pts_rgba_vals_list) | |
def compute_transformation(self,): | |
self.joint.compute_transformation() | |
# self.curr_rot_mtx = np.copy(self.joint.rot_mtx) | |
# self.curr_trans_vec = np.copy(self.joint.trans_vec) | |
self.curr_rot_mtx = self.joint.rot_mtx | |
self.curr_trans_vec = self.joint.trans_vec | |
# rot_p (rot_c p + trans_c) + trans_p # | |
# rot_p rot_c p + rot_p trans_c + trans_p # | |
#### matmul #### | |
# tot_parent_rot_mtx = np.matmul(self.parent_rot_mtx, self.curr_rot_mtx) | |
# tot_parent_trans_vec = np.matmul(self.parent_rot_mtx, self.curr_trans_vec.reshape(3, 1)).reshape(3) + self.parent_trans_vec | |
tot_parent_rot_mtx = torch.matmul(self.parent_rot_mtx, self.curr_rot_mtx) | |
tot_parent_trans_vec = torch.matmul(self.parent_rot_mtx, self.curr_trans_vec.unsqueeze(-1)).view(3) + self.parent_trans_vec | |
self.tot_rot_mtx = tot_parent_rot_mtx | |
self.tot_trans_vec = tot_parent_trans_vec | |
# self.tot_rot_mtx = np.copy(tot_parent_rot_mtx) | |
# self.tot_trans_vec = np.copy(tot_parent_trans_vec) | |
for cur_link in self.children: | |
# cur_link.parent_rot_mtx = np.copy(tot_parent_rot_mtx) ### set children parent rot mtx and the trans vec | |
# cur_link.parent_trans_vec = np.copy(tot_parent_trans_vec) ## | |
cur_link.parent_rot_mtx = tot_parent_rot_mtx ### set children parent rot mtx and the trans vec # | |
cur_link.parent_trans_vec = tot_parent_trans_vec ## | |
cur_link.compute_transformation() ## compute self's transformations | |
def get_name_to_visual_pts_faces(self, name_to_visual_pts_faces): | |
# transform_visual_pts # ## rot_mt | |
self.body.transform_visual_pts(rot_mtx=self.tot_rot_mtx, trans_vec=self.tot_trans_vec) | |
name_to_visual_pts_faces[self.body.name] = {"pts": self.body.visual_pts, "faces": self.body.visual_faces_ref} | |
for cur_link in self.children: | |
cur_link.get_name_to_visual_pts_faces(name_to_visual_pts_faces) ## transform the pts faces | |
def get_visual_pts_list(self, visual_pts_list): | |
# transform_visual_pts # ## rot_mt | |
self.body.transform_visual_pts(rot_mtx=self.tot_rot_mtx, trans_vec=self.tot_trans_vec) | |
visual_pts_list.append(self.body.visual_pts) # body template # | |
# name_to_visual_pts_faces[self.body.name] = {"pts": self.body.visual_pts, "faces": self.body.visual_faces_ref} | |
for cur_link in self.children: | |
# cur_link.get_name_to_visual_pts_faces(name_to_visual_pts_faces) ## transform the pts faces | |
cur_link.get_visual_pts_list(visual_pts_list) | |
def set_joint_idx(self, joint_name_to_idx): | |
self.joint.set_joint_idx(joint_name_to_idx) | |
for cur_link in self.children: | |
cur_link.set_joint_idx(joint_name_to_idx) | |
# if self.name in joint_name_to_idx: | |
# self.joint_idx = joint_name_to_idx[self.name] | |
def get_nn_pts(self,): | |
nn_pts = 0 | |
nn_pts += self.body.get_nn_pts() | |
for cur_link in self.children: | |
nn_pts += cur_link.get_nn_pts() | |
self.nn_pts = nn_pts | |
return self.nn_pts | |
def clear_grads(self,): | |
if self.parent_rot_mtx.grad is not None: | |
self.parent_rot_mtx.grad.data = self.parent_rot_mtx.grad.data * 0. | |
if self.parent_trans_vec.grad is not None: | |
self.parent_trans_vec.grad.data = self.parent_trans_vec.grad.data * 0. | |
if self.curr_rot_mtx.grad is not None: | |
self.curr_rot_mtx.grad.data = self.curr_rot_mtx.grad.data * 0. | |
if self.curr_trans_vec.grad is not None: | |
self.curr_trans_vec.grad.data = self.curr_trans_vec.grad.data * 0. | |
if self.tot_rot_mtx.grad is not None: | |
self.tot_rot_mtx.grad.data = self.tot_rot_mtx.grad.data * 0. | |
if self.tot_trans_vec.grad is not None: | |
self.tot_trans_vec.grad.data = self.tot_trans_vec.grad.data * 0. | |
# print(f"parent_rot_mtx: {self.parent_rot_mtx.grad}") | |
# print(f"parent_trans_vec: {self.parent_trans_vec.grad}") | |
# print(f"curr_rot_mtx: {self.curr_rot_mtx.grad}") | |
# print(f"curr_trans_vec: {self.curr_trans_vec.grad}") | |
# print(f"tot_rot_mtx: {self.tot_rot_mtx.grad}") | |
# print(f"tot_trans_vec: {self.tot_trans_vec.grad}") | |
# print(f"Joint") | |
self.joint.clear_grads() | |
self.body.clear_grad() | |
for cur_link in self.children: | |
cur_link.clear_grads() | |
def set_args(self, args): | |
self.args = args | |
for cur_link in self.children: | |
cur_link.set_args(args) | |
class Robot: # robot and the robot # | |
def __init__(self, children_links, args) -> None: | |
self.children = children_links | |
self.args = args | |
def set_state(self, name_to_state): | |
for cur_link in self.children: | |
cur_link.set_state(name_to_state) | |
def compute_transformation(self,): | |
for cur_link in self.children: | |
cur_link.compute_transformation() | |
def get_name_to_visual_pts_faces(self, name_to_visual_pts_faces): | |
for cur_link in self.children: | |
cur_link.get_name_to_visual_pts_faces(name_to_visual_pts_faces) | |
def get_visual_pts_list(self, visual_pts_list): | |
for cur_link in self.children: | |
cur_link.get_visual_pts_list(visual_pts_list) | |
def set_joint_idx(self, joint_name_to_idx): | |
for cur_link in self.children: | |
cur_link.set_joint_idx(joint_name_to_idx) ### set joint idx ### | |
def set_state_via_vec(self, state_vec): ### set the state vec for the state vec ### | |
for cur_link in self.children: ### set the state vec for the state vec ### | |
cur_link.set_state_via_vec(state_vec) | |
# self.joint.set_state_via_vec(state_vec) | |
# for child_link in self.children: | |
# child_link.set_state_via_vec(state_vec) | |
# get_tot_transformed_joints | |
def get_tot_transformed_joints(self, transformed_joints): | |
for cur_link in self.children: # | |
transformed_joints = cur_link.get_tot_transformed_joints(transformed_joints) | |
return transformed_joints | |
def get_nn_pts(self): | |
nn_pts = 0 | |
for cur_link in self.children: | |
nn_pts += cur_link.get_nn_pts() | |
self.nn_pts = nn_pts | |
return self.nn_pts | |
def set_args(self, args): | |
self.args = args | |
for cur_link in self.children: ## args ## | |
cur_link.set_args(args) | |
def print_grads(self): | |
for cur_link in self.children: | |
cur_link.print_grads() | |
def clear_grads(self,): ## clear grads ## | |
for cur_link in self.children: | |
cur_link.clear_grads() | |
def compute_transformation_via_state_vecs(self, state_vals, visual_pts_list): | |
# parent_rot_mtx, parent_trans_vec | |
for cur_link in self.children: | |
cur_link.compute_transformation_via_state_vecs(state_vals, cur_link.parent_rot_mtx, cur_link.parent_trans_vec, visual_pts_list) | |
return visual_pts_list | |
# get_visual_pts_rgba_values(self, pts_rgba_vals_list): | |
def get_visual_pts_rgba_values(self, pts_rgba_vals_list): | |
for cur_link in self.children: | |
cur_link.get_visual_pts_rgba_values(pts_rgba_vals_list) | |
return pts_rgba_vals_list ## compute pts rgba vals list ## | |
def parse_nparray_from_string(strr, args): | |
vals = strr.split(" ") | |
vals = [float(val) for val in vals] | |
vals = np.array(vals, dtype=np.float32) | |
vals = torch.from_numpy(vals).float() | |
## vals ## | |
vals = nn.Parameter(vals.cuda(args.th_cuda_idx), requires_grad=True) | |
return vals | |
### parse link data ### | |
def parse_link_data(link, args): | |
link_name = link.attrib["name"] | |
# print(f"parsing link: {link_name}") ## joints body meshes # | |
joint = link.find("./joint") | |
joint_name = joint.attrib["name"] | |
joint_type = joint.attrib["type"] | |
if joint_type in ["revolute"]: ## a general xml parser here? | |
axis = joint.attrib["axis"] | |
axis = parse_nparray_from_string(axis, args=args) | |
else: | |
axis = None | |
pos = joint.attrib["pos"] # | |
pos = parse_nparray_from_string(pos, args=args) | |
quat = joint.attrib["quat"] | |
quat = parse_nparray_from_string(quat, args=args) | |
try: | |
frame = joint.attrib["frame"] | |
except: | |
frame = "WORLD" | |
if joint_type not in ["fixed"]: | |
damping = joint.attrib["damping"] | |
damping = float(damping) | |
else: | |
damping = 0.0 | |
cur_joint = Joint(joint_name, joint_type, axis, pos, quat, frame, damping, args=args) | |
body = link.find("./body") | |
body_name = body.attrib["name"] | |
body_type = body.attrib["type"] | |
if body_type == "mesh": | |
filename = body.attrib["filename"] | |
else: | |
filename = "" | |
if body_type == "sphere": | |
radius = body.attrib["radius"] | |
radius = float(radius) | |
else: | |
radius = 0. | |
pos = body.attrib["pos"] | |
pos = parse_nparray_from_string(pos, args=args) | |
quat = body.attrib["quat"] | |
quat = joint.attrib["quat"] | |
try: | |
transform_type = body.attrib["transform_type"] | |
except: | |
transform_type = "OBJ_TO_WORLD" | |
density = body.attrib["density"] | |
density = float(density) | |
mu = body.attrib["mu"] | |
mu = float(mu) | |
try: ## rgba ## | |
rgba = body.attrib["rgba"] | |
rgba = parse_nparray_from_string(rgba, args=args) | |
except: | |
rgba = np.zeros((4,), dtype=np.float32) | |
cur_body = Body(body_name, body_type, filename, pos, quat, transform_type, density, mu, rgba, radius, args=args) | |
children_link = [] | |
links = link.findall("./link") | |
for child_link in links: # | |
cur_child_link = parse_link_data(child_link, args=args) | |
children_link.append(cur_child_link) | |
link_name = link.attrib["name"] | |
link_obj = Link(link_name, joint=cur_joint, body=cur_body, children=children_link, args=args) | |
return link_obj | |
def parse_data_from_xml(xml_fn, args): | |
tree = ElementTree() | |
tree.parse(xml_fn) | |
### get total robots ### | |
robots = tree.findall("./robot") | |
i_robot = 0 | |
tot_robots = [] | |
for cur_robot in robots: | |
print(f"Getting robot: {i_robot}") | |
i_robot += 1 | |
cur_links = cur_robot.findall("./link") | |
# i_link = 0 | |
cur_robot_links = [] | |
for cur_link in cur_links: ## child of the link ## | |
### a parse link util -> the child of the link is composed of (the joint; body; and children links (with children or with no child here)) | |
# cur_link_name = cur_link.attrib["name"] | |
# print(f"Getting link: {i_link} with name: {cur_link_name}") | |
# i_link += 1 ## | |
cur_robot_links.append(parse_link_data(cur_link, args=args)) | |
cur_robot_obj = Robot(cur_robot_links, args=args) | |
tot_robots.append(cur_robot_obj) | |
tot_actuators = [] | |
actuators = tree.findall("./actuator/motor") | |
joint_nm_to_joint_idx = {} | |
i_act = 0 | |
for cur_act in actuators: | |
cur_act_joint_nm = cur_act.attrib["joint"] | |
joint_nm_to_joint_idx[cur_act_joint_nm] = i_act | |
i_act += 1 ### add the act ### | |
tot_robots[0].set_joint_idx(joint_nm_to_joint_idx) ### set joint idx here ### # tot robots # | |
tot_robots[0].get_nn_pts() | |
tot_robots[1].get_nn_pts() | |
return tot_robots | |
def get_name_to_state_from_str(states_str): | |
tot_states = states_str.split(" ") | |
tot_states = [float(cur_state) for cur_state in tot_states] | |
joint_name_to_state = {} | |
for i in range(len(tot_states)): | |
cur_joint_name = f"joint{i + 1}" | |
cur_joint_state = tot_states[i] | |
joint_name_to_state[cur_joint_name] = cur_joint_state | |
return joint_name_to_state | |
def create_zero_states(): | |
nn_joints = 17 | |
joint_name_to_state = {} | |
for i_j in range(nn_joints): | |
cur_joint_name = f"joint{i_j + 1}" | |
joint_name_to_state[cur_joint_name] = 0. | |
return joint_name_to_state | |
# [6.96331033e-17 3.54807679e-06 1.74046190e-15 2.66367417e-05 | |
# 1.22444894e-05 3.38976792e-06 1.46917635e-15 2.66367383e-05 | |
# 1.22444882e-05 3.38976786e-06 1.97778813e-15 2.66367383e-05 | |
# 1.22444882e-05 3.38976786e-06 4.76033293e-16 1.26279884e-05 | |
# 3.51189993e-06 0.00000000e+00 4.89999978e-03 0.00000000e+00] | |
def rotation_matrix_from_axis_angle_np(axis, angle): # rotation_matrix_from_axis_angle -> | |
sin_ = np.sin(angle) # ti.math.sin(angle) | |
cos_ = np.cos(angle) # ti.math.cos(angle) | |
# sin_ = torch.sin(angle) # ti.math.sin(angle) | |
# cos_ = torch.cos(angle) # ti.math.cos(angle) | |
u_x, u_y, u_z = axis[0], axis[1], axis[2] | |
u_xx = u_x * u_x | |
u_yy = u_y * u_y | |
u_zz = u_z * u_z | |
u_xy = u_x * u_y | |
u_xz = u_x * u_z | |
u_yz = u_y * u_z ## | |
row_a = np.stack( | |
[cos_ + u_xx * (1 - cos_), u_xy * (1. - cos_) + u_z * sin_, u_xz * (1. - cos_) - u_y * sin_], axis=0 | |
) | |
# print(f"row_a: {row_a.size()}") | |
row_b = np.stack( | |
[u_xy * (1. - cos_) - u_z * sin_, cos_ + u_yy * (1. - cos_), u_yz * (1. - cos_) + u_x * sin_], axis=0 | |
) | |
# print(f"row_b: {row_b.size()}") | |
row_c = np.stack( | |
[u_xz * (1. - cos_) + u_y * sin_, u_yz * (1. - cos_) - u_x * sin_, cos_ + u_zz * (1. - cos_)], axis=0 | |
) | |
# print(f"row_c: {row_c.size()}") | |
### rot_mtx for the rot_mtx ### | |
rot_mtx = np.stack( | |
[row_a, row_b, row_c], axis=-1 ### rot_matrix of he matrix ## | |
) | |
return rot_mtx | |
def rotation_matrix_from_axis_angle(axis, angle): # rotation_matrix_from_axis_angle -> | |
# sin_ = np.sin(angle) # ti.math.sin(angle) | |
# cos_ = np.cos(angle) # ti.math.cos(angle) | |
sin_ = torch.sin(angle) # ti.math.sin(angle) | |
cos_ = torch.cos(angle) # ti.math.cos(angle) | |
u_x, u_y, u_z = axis[0], axis[1], axis[2] | |
u_xx = u_x * u_x | |
u_yy = u_y * u_y | |
u_zz = u_z * u_z | |
u_xy = u_x * u_y | |
u_xz = u_x * u_z | |
u_yz = u_y * u_z ## | |
row_a = torch.stack( | |
[cos_ + u_xx * (1 - cos_), u_xy * (1. - cos_) + u_z * sin_, u_xz * (1. - cos_) - u_y * sin_], dim=0 | |
) | |
# print(f"row_a: {row_a.size()}") | |
row_b = torch.stack( | |
[u_xy * (1. - cos_) - u_z * sin_, cos_ + u_yy * (1. - cos_), u_yz * (1. - cos_) + u_x * sin_], dim=0 | |
) | |
# print(f"row_b: {row_b.size()}") | |
row_c = torch.stack( | |
[u_xz * (1. - cos_) + u_y * sin_, u_yz * (1. - cos_) - u_x * sin_, cos_ + u_zz * (1. - cos_)], dim=0 | |
) | |
# print(f"row_c: {row_c.size()}") | |
### rot_mtx for the rot_mtx ### | |
rot_mtx = torch.stack( | |
[row_a, row_b, row_c], dim=-1 ### rot_matrix of he matrix ## | |
) | |
return rot_mtx | |
def get_camera_to_world_poses(n=10, ): | |
## sample from the upper half sphere ## | |
# theta and phi for the | |
theta = np.random.uniform(low=0.0, high=1.0, size=(n,)) * np.pi * 2. # xz palne # | |
phi = np.random.uniform(low=-1.0, high=0.0, size=(n,)) * np.pi ## [-0.5 \pi, 0.5 \pi] ## negative pi to the original pi | |
# theta = torch.from_numpy(theta).float().cuda() | |
tot_c2w_matrix = [] | |
for i_n in range(n): | |
# y_rot_vec = torch.tensor([0., 1., 0.]).float().cuda(th_cuda_idx) | |
# y_rot_mtx = load_utils.rotation_matrix_from_axis_angle(rot_vec, rot_angle) | |
z_axis_rot_axis = np.array([0, 0, 1.], dtype=np.float32) | |
z_axis_rot_angle = np.pi - theta[i_n] | |
z_axis_rot_matrix = rotation_matrix_from_axis_angle_np(z_axis_rot_axis, z_axis_rot_angle) | |
rotated_plane_rot_axis_ori = np.array([1, -1, 0], dtype=np.float32) | |
rotated_plane_rot_axis_ori = rotated_plane_rot_axis_ori / np.sqrt(np.sum(rotated_plane_rot_axis_ori ** 2)) | |
rotated_plane_rot_axis = np.matmul(z_axis_rot_matrix, rotated_plane_rot_axis_ori) | |
plane_rot_angle = phi[i_n] | |
plane_rot_matrix = rotation_matrix_from_axis_angle_np(rotated_plane_rot_axis, plane_rot_angle) | |
c2w_matrix = np.matmul(plane_rot_matrix, z_axis_rot_matrix) | |
c2w_trans_matrix = np.array( | |
[np.cos(theta[i_n]) * np.sin(phi[i_n]), np.sin(theta[i_n]) * np.sin(phi[i_n]), np.cos(phi[i_n])], dtype=np.float32 | |
) | |
c2w_matrix = np.concatenate( | |
[c2w_matrix, c2w_trans_matrix.reshape(3, 1)], axis=-1 | |
) ##c2w matrix | |
tot_c2w_matrix.append(c2w_matrix) | |
tot_c2w_matrix = np.stack(tot_c2w_matrix, axis=0) | |
return tot_c2w_matrix | |
def get_camera_to_world_poses_th(n=10, th_cuda_idx=0): | |
## sample from the upper half sphere ## | |
# theta and phi for the | |
theta = np.random.uniform(low=0.0, high=1.0, size=(n,)) * np.pi * 2. # xz palne # | |
phi = np.random.uniform(low=-1.0, high=0.0, size=(n,)) * np.pi ## [-0.5 \pi, 0.5 \pi] ## negative pi to the original pi | |
# n_total = 14 | |
# n_xz = 14 | |
# n_y = 7 | |
# theta = [i_xz * 1.0 / float(n_xz) * np.pi * 2. for i_xz in range(n_xz)] | |
# phi = [i_y * (-1.0) / float(n_y) * np.pi for i_y in range(n_y)] | |
theta = torch.from_numpy(theta).float().cuda(th_cuda_idx) | |
phi = torch.from_numpy(phi).float().cuda(th_cuda_idx) | |
tot_c2w_matrix = [] | |
for i_n in range(n): # if use veyr dense views like those | |
y_rot_angle = theta[i_n] | |
y_rot_vec = torch.tensor([0., 1., 0.]).float().cuda(th_cuda_idx) | |
y_rot_mtx = rotation_matrix_from_axis_angle(y_rot_vec, y_rot_angle) | |
x_axis = torch.tensor([1., 0., 0.]).float().cuda(th_cuda_idx) | |
y_rot_x_axis = torch.matmul(y_rot_mtx, x_axis.unsqueeze(-1)).squeeze(-1) ### y_rot_x_axis # | |
x_rot_angle = phi[i_n] | |
x_rot_mtx = rotation_matrix_from_axis_angle(y_rot_x_axis, x_rot_angle) | |
rot_mtx = torch.matmul(x_rot_mtx, y_rot_mtx) | |
xyz_offset = torch.tensor([0., 0., 1.5]).float().cuda(th_cuda_idx) | |
rot_xyz_offset = torch.matmul(rot_mtx, xyz_offset.unsqueeze(-1)).squeeze(-1).contiguous() + 0.5 ### 3 for the xyz offset | |
c2w_matrix = torch.cat( | |
[rot_mtx, rot_xyz_offset.unsqueeze(-1)], dim=-1 | |
) | |
tot_c2w_matrix.append(c2w_matrix) | |
# z_axis_rot_axis = np.array([0, 0, 1.], dtype=np.float32) | |
# z_axis_rot_angle = np.pi - theta[i_n] | |
# z_axis_rot_matrix = rotation_matrix_from_axis_angle_np(z_axis_rot_axis, z_axis_rot_angle) | |
# rotated_plane_rot_axis_ori = np.array([1, -1, 0], dtype=np.float32) | |
# rotated_plane_rot_axis_ori = rotated_plane_rot_axis_ori / np.sqrt(np.sum(rotated_plane_rot_axis_ori ** 2)) | |
# rotated_plane_rot_axis = np.matmul(z_axis_rot_matrix, rotated_plane_rot_axis_ori) | |
# plane_rot_angle = phi[i_n] | |
# plane_rot_matrix = rotation_matrix_from_axis_angle_np(rotated_plane_rot_axis, plane_rot_angle) | |
# c2w_matrix = np.matmul(plane_rot_matrix, z_axis_rot_matrix) | |
# c2w_trans_matrix = np.array( | |
# [np.cos(theta[i_n]) * np.sin(phi[i_n]), np.sin(theta[i_n]) * np.sin(phi[i_n]), np.cos(phi[i_n])], dtype=np.float32 | |
# ) | |
# c2w_matrix = np.concatenate( | |
# [c2w_matrix, c2w_trans_matrix.reshape(3, 1)], axis=-1 | |
# ) ##c2w matrix | |
# tot_c2w_matrix.append(c2w_matrix) | |
# tot_c2w_matrix = np.stack(tot_c2w_matrix, axis=0) | |
tot_c2w_matrix = torch.stack(tot_c2w_matrix, dim=0) | |
return tot_c2w_matrix | |
def get_camera_to_world_poses_th_routine_1(n=7, th_cuda_idx=0): | |
## sample from the upper half sphere ## | |
# theta and phi for the | |
# theta = np.random.uniform(low=0.0, high=1.0, size=(n,)) * np.pi * 2. # xz palne # | |
# phi = np.random.uniform(low=-1.0, high=0.0, size=(n,)) * np.pi ## [-0.5 \pi, 0.5 \pi] ## negative pi to the original pi | |
# n_total = 14 | |
n_xz = 2 * n # 14 | |
n_y = n # 7 | |
theta = [i_xz * 1.0 / float(n_xz) * np.pi * 2. for i_xz in range(n_xz)] | |
phi = [i_y * (-1.0) / float(n_y) * np.pi for i_y in range(n_y)] | |
theta = torch.tensor(theta).float().cuda(th_cuda_idx) | |
phi = torch.tensor(phi).float().cuda(th_cuda_idx) | |
# theta = torch.from_numpy(theta).float().cuda(th_cuda_idx) | |
# phi = torch.from_numpy(phi).float().cuda(th_cuda_idx) | |
tot_c2w_matrix = [] | |
for i_theta in range(theta.size(0)): | |
for i_phi in range(phi.size(0)): | |
y_rot_angle = theta[i_theta] | |
y_rot_vec = torch.tensor([0., 1., 0.]).float().cuda(th_cuda_idx) | |
y_rot_mtx = rotation_matrix_from_axis_angle(y_rot_vec, y_rot_angle) | |
x_axis = torch.tensor([1., 0., 0.]).float().cuda(th_cuda_idx) | |
y_rot_x_axis = torch.matmul(y_rot_mtx, x_axis.unsqueeze(-1)).squeeze(-1) ### y_rot_x_axis # | |
x_rot_angle = phi[i_phi] | |
x_rot_mtx = rotation_matrix_from_axis_angle(y_rot_x_axis, x_rot_angle) | |
rot_mtx = torch.matmul(x_rot_mtx, y_rot_mtx) | |
xyz_offset = torch.tensor([0., 0., 1.5]).float().cuda(th_cuda_idx) | |
rot_xyz_offset = torch.matmul(rot_mtx, xyz_offset.unsqueeze(-1)).squeeze(-1).contiguous() + 0.5 ### 3 for the xyz offset | |
c2w_matrix = torch.cat( | |
[rot_mtx, rot_xyz_offset.unsqueeze(-1)], dim=-1 | |
) | |
tot_c2w_matrix.append(c2w_matrix) | |
tot_c2w_matrix = torch.stack(tot_c2w_matrix, dim=0) | |
return tot_c2w_matrix | |
def get_camera_to_world_poses_th_routine_2(n=7, th_cuda_idx=0): | |
## sample from the upper half sphere ## | |
# theta and phi for the | |
# theta = np.random.uniform(low=0.0, high=1.0, size=(n,)) * np.pi * 2. # xz palne # | |
# phi = np.random.uniform(low=-1.0, high=0.0, size=(n,)) * np.pi ## [-0.5 \pi, 0.5 \pi] ## negative pi to the original pi | |
# n_total = 14 | |
n_xz = 2 * n # 14 | |
n_y = 2 * n # 7 | |
theta = [i_xz * 1.0 / float(n_xz) * np.pi * 2. for i_xz in range(n_xz)] | |
# phi = [i_y * (-1.0) / float(n_y) * np.pi for i_y in range(n_y)] | |
phi = [i_y * (-1.0) / float(n_y) * np.pi * 2. for i_y in range(n_y)] | |
theta = torch.tensor(theta).float().cuda(th_cuda_idx) | |
phi = torch.tensor(phi).float().cuda(th_cuda_idx) | |
# theta = torch.from_numpy(theta).float().cuda(th_cuda_idx) | |
# phi = torch.from_numpy(phi).float().cuda(th_cuda_idx) | |
tot_c2w_matrix = [] | |
for i_theta in range(theta.size(0)): | |
for i_phi in range(phi.size(0)): | |
y_rot_angle = theta[i_theta] | |
y_rot_vec = torch.tensor([0., 1., 0.]).float().cuda(th_cuda_idx) | |
y_rot_mtx = rotation_matrix_from_axis_angle(y_rot_vec, y_rot_angle) | |
x_axis = torch.tensor([1., 0., 0.]).float().cuda(th_cuda_idx) | |
y_rot_x_axis = torch.matmul(y_rot_mtx, x_axis.unsqueeze(-1)).squeeze(-1) ### y_rot_x_axis # | |
x_rot_angle = phi[i_phi] | |
x_rot_mtx = rotation_matrix_from_axis_angle(y_rot_x_axis, x_rot_angle) | |
rot_mtx = torch.matmul(x_rot_mtx, y_rot_mtx) | |
xyz_offset = torch.tensor([0., 0., 1.5]).float().cuda(th_cuda_idx) | |
rot_xyz_offset = torch.matmul(rot_mtx, xyz_offset.unsqueeze(-1)).squeeze(-1).contiguous() + 0.5 ### 3 for the xyz offset | |
c2w_matrix = torch.cat( | |
[rot_mtx, rot_xyz_offset.unsqueeze(-1)], dim=-1 | |
) | |
tot_c2w_matrix.append(c2w_matrix) | |
tot_c2w_matrix = torch.stack(tot_c2w_matrix, dim=0) | |
return tot_c2w_matrix | |
if __name__=='__main__': | |
xml_fn = "/home/xueyi/diffsim/DiffHand/assets/hand_sphere.xml" | |
tot_robots = parse_data_from_xml(xml_fn=xml_fn) | |
# tot_robots = | |
active_optimized_states = """-0.00025872 -0.00025599 -0.00025296 -0.00022881 -0.00024449 -0.0002549 -0.00025296 -0.00022881 -0.00024449 -0.0002549 -0.00025296 -0.00022881 -0.00024449 -0.0002549 -0.00025694 -0.00024656 -0.00025556 0. 0.0049 0.""" | |
active_optimized_states = """-1.10617972 -1.10742263 -1.06198363 -1.03212746 -1.05429142 -1.08617289 -1.05868192 -1.01624365 -1.04478191 -1.08260959 -1.06719107 -1.04082455 -1.05995886 -1.08674006 -1.09396691 -1.08965532 -1.10036577 -10.7117466 -3.62511998 1.49450353""" | |
# active_goal_optimized_states = """-1.10617972 -1.10742263 -1.0614858 -1.03189609 -1.05404354 -1.08610468 -1.05863293 -1.0174248 -1.04576456 -1.08297396 -1.06719107 -1.04082455 -1.05995886 -1.08674006 -1.09396691 -1.08965532 -1.10036577 -10.73396897 -3.68095432 1.50679285""" | |
active_optimized_states = """-0.42455298 -0.42570447 -0.40567708 -0.39798589 -0.40953955 -0.42025055 -0.37910662 -0.496165 -0.37664644 -0.41942727 -0.40596508 -0.3982109 -0.40959847 -0.42024905 -0.41835001 -0.41929961 -0.42365131 -1.18756073 -2.90337822 0.4224685""" | |
active_optimized_states = """-0.42442816 -0.42557961 -0.40366201 -0.3977891 -0.40947627 -0.4201424 -0.3799285 -0.3808375 -0.37953552 -0.42039598 -0.4058405 -0.39808804 -0.40947487 -0.42012458 -0.41822534 -0.41917521 -0.4235266 -0.87189658 -1.42093761 0.21977979""" | |
active_robot = tot_robots[0] | |
zero_states = create_zero_states() | |
active_robot.set_state(zero_states) | |
active_robot.compute_transformation() | |
name_to_visual_pts_surfaces = {} | |
active_robot.get_name_to_visual_pts_faces(name_to_visual_pts_surfaces) | |
print(len(name_to_visual_pts_surfaces)) | |
sv_res_rt = "/home/xueyi/diffsim/DiffHand/examples/save_res" | |
sv_res_rt = os.path.join(sv_res_rt, "load_utils_test") | |
os.makedirs(sv_res_rt, exist_ok=True) | |
tmp_visual_res_sv_fn = os.path.join(sv_res_rt, f"res_with_zero_states.npy") | |
np.save(tmp_visual_res_sv_fn, name_to_visual_pts_surfaces) | |
print(f"tmp visual res saved to {tmp_visual_res_sv_fn}") | |
optimized_states = get_name_to_state_from_str(active_optimized_states) | |
active_robot.set_state(optimized_states) | |
active_robot.compute_transformation() | |
name_to_visual_pts_surfaces = {} | |
active_robot.get_name_to_visual_pts_faces(name_to_visual_pts_surfaces) | |
print(len(name_to_visual_pts_surfaces)) | |
# sv_res_rt = "/home/xueyi/diffsim/DiffHand/examples/save_res" | |
# sv_res_rt = os.path.join(sv_res_rt, "load_utils_test") | |
# os.makedirs(sv_res_rt, exist_ok=True) | |
# tmp_visual_res_sv_fn = os.path.join(sv_res_rt, f"res_with_optimized_states.npy") | |
tmp_visual_res_sv_fn = os.path.join(sv_res_rt, f"active_ngoal_res_with_optimized_states_goal_n3.npy") | |
np.save(tmp_visual_res_sv_fn, name_to_visual_pts_surfaces) | |
print(f"tmp visual res with optimized states saved to {tmp_visual_res_sv_fn}") | |