Spaces:
Running
Running
import math | |
# import torch | |
# from ..utils import Timer | |
import numpy as np | |
# import torch.nn.functional as F | |
import os | |
import argparse | |
from xml.etree.ElementTree import ElementTree | |
import trimesh | |
import torch | |
import torch.nn as nn | |
# import List | |
# class link; joint; body | |
### | |
from scipy.spatial.transform import Rotation as R | |
from torch.distributions.uniform import Uniform | |
# deformable articulated objects with the articulated models # | |
DAMPING = 1.0 | |
DAMPING = 0.3 | |
def plane_rotation_matrix_from_angle_xz(angle): | |
sin_ = torch.sin(angle) | |
cos_ = torch.cos(angle) | |
zero_padding = torch.zeros_like(cos_) | |
one_padding = torch.ones_like(cos_) | |
col_a = torch.stack( | |
[cos_, zero_padding, sin_], dim=0 | |
) | |
col_b = torch.stack( | |
[zero_padding, one_padding, zero_padding], dim=0 | |
) | |
col_c = torch.stack( | |
[-1. * sin_, zero_padding, cos_], dim=0 | |
) | |
rot_mtx = torch.stack( | |
[col_a, col_b, col_c], dim=-1 | |
) | |
return rot_mtx | |
def plane_rotation_matrix_from_angle(angle): | |
## angle of | |
sin_ = torch.sin(angle) | |
cos_ = torch.cos(angle) | |
col_a = torch.stack( | |
[cos_, sin_], dim=0 ### col of the rotation matrix | |
) | |
col_b = torch.stack( | |
[-1. * sin_, cos_], dim=0 ## cols of the rotation matrix | |
) | |
rot_mtx = torch.stack( | |
[col_a, col_b], dim=-1 ### rotation matrix | |
) | |
return rot_mtx | |
def rotation_matrix_from_axis_angle(axis, angle): # rotation_matrix_from_axis_angle -> | |
# sin_ = np.sin(angle) # ti.math.sin(angle) | |
# cos_ = np.cos(angle) # ti.math.cos(angle) | |
sin_ = torch.sin(angle) # ti.math.sin(angle) | |
cos_ = torch.cos(angle) # ti.math.cos(angle) | |
u_x, u_y, u_z = axis[0], axis[1], axis[2] | |
u_xx = u_x * u_x | |
u_yy = u_y * u_y | |
u_zz = u_z * u_z | |
u_xy = u_x * u_y | |
u_xz = u_x * u_z | |
u_yz = u_y * u_z | |
row_a = torch.stack( | |
[cos_ + u_xx * (1 - cos_), u_xy * (1. - cos_) + u_z * sin_, u_xz * (1. - cos_) - u_y * sin_], dim=0 | |
) | |
# print(f"row_a: {row_a.size()}") | |
row_b = torch.stack( | |
[u_xy * (1. - cos_) - u_z * sin_, cos_ + u_yy * (1. - cos_), u_yz * (1. - cos_) + u_x * sin_], dim=0 | |
) | |
# print(f"row_b: {row_b.size()}") | |
row_c = torch.stack( | |
[u_xz * (1. - cos_) + u_y * sin_, u_yz * (1. - cos_) - u_x * sin_, cos_ + u_zz * (1. - cos_)], dim=0 | |
) | |
# print(f"row_c: {row_c.size()}") | |
### rot_mtx for the rot_mtx ### | |
rot_mtx = torch.stack( | |
[row_a, row_b, row_c], dim=-1 ### rot_matrix of he matrix ## | |
) | |
return rot_mtx | |
def update_quaternion(delta_angle, prev_quat): | |
s1 = 0 | |
s2 = prev_quat[0] | |
v2 = prev_quat[1:] | |
v1 = delta_angle / 2 | |
new_v = s1 * v2 + s2 * v1 + torch.cross(v1, v2) | |
new_s = s1 * s2 - torch.sum(v1 * v2) | |
new_quat = torch.cat([new_s.unsqueeze(0), new_v], dim=0) | |
return new_quat | |
def quaternion_to_matrix(quaternions: torch.Tensor) -> torch.Tensor: | |
""" | |
Convert rotations given as quaternions to rotation matrices. | |
Args: | |
quaternions: quaternions with real part first, | |
as tensor of shape (..., 4). | |
Returns: | |
Rotation matrices as tensor of shape (..., 3, 3). | |
""" | |
r, i, j, k = torch.unbind(quaternions, -1) # -1 for the quaternion matrix # | |
# pyre-fixme[58]: `/` is not supported for operand types `float` and `Tensor`. | |
two_s = 2.0 / (quaternions * quaternions).sum(-1) | |
o = torch.stack( | |
( | |
1 - two_s * (j * j + k * k), | |
two_s * (i * j - k * r), | |
two_s * (i * k + j * r), | |
two_s * (i * j + k * r), | |
1 - two_s * (i * i + k * k), | |
two_s * (j * k - i * r), | |
two_s * (i * k - j * r), | |
two_s * (j * k + i * r), | |
1 - two_s * (i * i + j * j), | |
), | |
-1, | |
) | |
return o.reshape(quaternions.shape[:-1] + (3, 3)) | |
class Inertial: | |
def __init__(self, origin_rpy, origin_xyz, mass, inertia) -> None: | |
self.origin_rpy = origin_rpy | |
self.origin_xyz = origin_xyz | |
self.mass = mass | |
self.inertia = inertia | |
if torch.sum(self.inertia).item() < 1e-4: | |
self.inertia = self.inertia + torch.eye(3, dtype=torch.float32).cuda() | |
pass | |
class Visual: | |
def __init__(self, visual_xyz, visual_rpy, geometry_mesh_fn, geometry_mesh_scale) -> None: | |
# self.visual_origin = visual_origin | |
self.visual_xyz = visual_xyz | |
self.visual_rpy = visual_rpy | |
self.mesh_nm = geometry_mesh_fn.split("/")[-1].split(".")[0] | |
mesh_root = "/home/xueyi/diffsim/NeuS/rsc/mano" ## mano models of the mesh root ## | |
if not os.path.exists(mesh_root): | |
mesh_root = "/data/xueyi/diffsim/NeuS/rsc/mano" | |
self.mesh_root = mesh_root | |
self.geometry_mesh_fn = os.path.join(mesh_root, geometry_mesh_fn) | |
self.geometry_mesh_scale = geometry_mesh_scale | |
# tranformed by xyz # | |
self.vertices, self.faces = self.load_geoemtry_mesh() | |
self.cur_expanded_visual_pts = None | |
pass | |
def load_geoemtry_mesh(self, ): | |
# mesh_root = | |
mesh = trimesh.load_mesh(self.geometry_mesh_fn) | |
vertices = mesh.vertices | |
faces = mesh.faces | |
vertices = torch.from_numpy(vertices).float().cuda() | |
faces =torch.from_numpy(faces).long().cuda() | |
vertices = vertices * self.geometry_mesh_scale.unsqueeze(0) + self.visual_xyz.unsqueeze(0) | |
return vertices, faces | |
# init_visual_meshes = get_init_visual_meshes(self, parent_rot, parent_trans, init_visual_meshes) | |
def get_init_visual_meshes(self, parent_rot, parent_trans, init_visual_meshes): | |
# cur_vertices = torch.matmul(parent_rot, self.vertices.transpose(1, 0)).contiguous().transpose(1, 0).contiguous() + parent_trans.unsqueeze(0) | |
cur_vertices = self.vertices | |
# print(f"adding mesh loaded from {self.geometry_mesh_fn}") | |
init_visual_meshes['vertices'].append(cur_vertices) # cur vertices # trans # | |
init_visual_meshes['faces'].append(self.faces) | |
return init_visual_meshes | |
def expand_visual_pts(self, ): | |
expand_factor = 0.2 | |
nn_expand_pts = 20 | |
expand_factor = 0.4 | |
nn_expand_pts = 40 ### number of the expanded points ### ## points ## | |
expand_save_fn = f"{self.mesh_nm}_expanded_pts_factor_{expand_factor}_nnexp_{nn_expand_pts}.npy" | |
expand_save_fn = os.path.join(self.mesh_root, expand_save_fn) | |
if not os.path.exists(expand_save_fn): | |
cur_expanded_visual_pts = [] | |
if self.cur_expanded_visual_pts is None: | |
cur_src_pts = self.vertices | |
else: | |
cur_src_pts = self.cur_expanded_visual_pts | |
maxx_verts, _ = torch.max(cur_src_pts, dim=0) | |
minn_verts, _ = torch.min(cur_src_pts, dim=0) | |
extent_verts = maxx_verts - minn_verts ## (3,)-dim vecotr | |
norm_extent_verts = torch.norm(extent_verts, dim=-1).item() ## (1,)-dim vector | |
expand_r = norm_extent_verts * expand_factor | |
# nn_expand_pts = 5 # expand the vertices to 5 times of the original vertices | |
for i_pts in range(self.vertices.size(0)): | |
cur_pts = cur_src_pts[i_pts] | |
# sample from the circile with cur_pts as thejcenter and the radius as expand_r | |
# (-r, r) # sample the offset vector in the size of (nn_expand_pts, 3) | |
offset_dist = Uniform(-1. * expand_r, expand_r) | |
offset_vec = offset_dist.sample((nn_expand_pts, 3)).cuda() | |
cur_expanded_pts = cur_pts + offset_vec | |
cur_expanded_visual_pts.append(cur_expanded_pts) | |
cur_expanded_visual_pts = torch.cat(cur_expanded_visual_pts, dim=0) | |
np.save(expand_save_fn, cur_expanded_visual_pts.detach().cpu().numpy()) | |
else: | |
print(f"Loading visual pts from {expand_save_fn}") # load from the fn # | |
cur_expanded_visual_pts = np.load(expand_save_fn, allow_pickle=True) | |
cur_expanded_visual_pts = torch.from_numpy(cur_expanded_visual_pts).float().cuda() | |
self.cur_expanded_visual_pts = cur_expanded_visual_pts # expanded visual pts # | |
return self.cur_expanded_visual_pts | |
# cur_pts # | |
# use r as the search direction # # expande save fn # | |
def get_transformed_visual_pts(self, visual_pts_list): | |
visual_pts_list.append(self.cur_expanded_visual_pts) # | |
return visual_pts_list | |
## link urdf ## expand the visual pts to form the expanded visual grids pts # | |
# use get_name_to_visual_pts_faces to get the transformed visual pts and faces # | |
## Link_urdf ## | |
class Link_urdf: # get_transformed_visual_pts # | |
def __init__(self, name, inertial: Inertial, visual: Visual=None) -> None: | |
self.name = name | |
self.inertial = inertial | |
self.visual = visual # vsiual meshes # | |
# self.joint = joint | |
# self.body = body | |
# self.children = children | |
# self.name = name | |
self.link_idx = ... | |
# self.args = args | |
self.joint = None # joint name to struct | |
# self.join | |
self.children = ... | |
self.children = {} # joint name to child sruct | |
### dyn_model_act ### | |
# parent_rot_mtx, parent_trans_vec # | |
# parent_rot_mtx, parent_trans_vec # # link urdf # | |
# self.parent_rot_mtx = nn.Parameter(torch.eye(n=3, dtype=torch.float32).cuda(), requires_grad=True) | |
# self.parent_trans_vec = nn.Parameter(torch.zeros((3,), dtype=torch.float32).cuda(), requires_grad=True) | |
# self.curr_rot_mtx = nn.Parameter(torch.eye(n=3, dtype=torch.float32).cuda(), requires_grad=True) | |
# self.curr_trans_vec = nn.Parameter(torch.zeros((3,), dtype=torch.float32).cuda(), requires_grad=True) | |
# # | |
# self.tot_rot_mtx = nn.Parameter(torch.eye(n=3, dtype=torch.float32).cuda(), requires_grad=True) | |
# self.tot_trans_vec = nn.Parameter(torch.zeros((3,), dtype=torch.float32).cuda(), requires_grad=True) | |
# expand visual pts # | |
def expand_visual_pts(self, expanded_visual_pts, link_name_to_visited, link_name_to_link_struct): | |
link_name_to_visited[self.name] = 1 | |
if self.visual is not None: | |
cur_expanded_visual_pts = self.visual.expand_visual_pts() | |
expanded_visual_pts.append(cur_expanded_visual_pts) | |
for cur_link in self.children: | |
cur_link_struct = link_name_to_link_struct[self.children[cur_link]] | |
cur_link_name = cur_link_struct.name | |
if cur_link_name in link_name_to_visited: | |
continue | |
expanded_visual_pts = cur_link_struct.expand_visual_pts(expanded_visual_pts, link_name_to_visited, link_name_to_link_struct) | |
return expanded_visual_pts | |
def get_transformed_visual_pts(self, visual_pts_list, link_name_to_visited, link_name_to_link_struct): | |
link_name_to_visited[self.name] = 1 | |
if self.joint is not None: | |
for cur_joint_name in self.joint: | |
cur_joint = self.joint[cur_joint_name] | |
cur_child_name = self.children[cur_joint_name] | |
cur_child = link_name_to_link_struct[cur_child_name] # parent and the child_visual, cur_child.visual # | |
# parent # | |
# print(f"joint: {cur_joint.name}, child: {cur_child_name}, parent: {self.name}, child_visual: {cur_child.visual is not None}") | |
# print(f"joint: {cur_joint.name}, child: {cur_child_name}, parent: {self.name}, child_visual: {cur_child.visual is not None}") | |
# joint_origin_xyz = cur_joint.origin_xyz ## transformed_visual_pts #### | |
if cur_child_name in link_name_to_visited: | |
continue | |
# cur_child_visual_pts = {'vertices': [], 'faces': [], 'link_idxes': [], 'transformed_joint_pos': [], 'joint_link_idxes': []} | |
cur_child_visual_pts_list = [] | |
cur_child_visual_pts_list = cur_child.get_transformed_visual_pts(cur_child_visual_pts_list, link_name_to_visited, link_name_to_link_struct) | |
if len(cur_child_visual_pts_list) > 0: | |
cur_child_visual_pts = torch.cat(cur_child_visual_pts_list, dim=0) | |
# cur_child_verts, cur_child_faces = cur_child_visual_pts['vertices'], cur_child_visual_pts['faces'] | |
# cur_child_link_idxes = cur_child_visual_pts['link_idxes'] | |
# cur_transformed_joint_pos = cur_child_visual_pts['transformed_joint_pos'] | |
# joint_link_idxes = cur_child_visual_pts['joint_link_idxes'] | |
# if len(cur_child_verts) > 0: | |
# cur_child_verts, cur_child_faces = merge_meshes(cur_child_verts, cur_child_faces) | |
cur_child_visual_pts = cur_child_visual_pts + cur_joint.origin_xyz.unsqueeze(0) | |
cur_joint_rot, cur_joint_trans = cur_joint.compute_transformation_from_current_state() | |
cur_child_visual_pts = torch.matmul(cur_joint_rot, cur_child_visual_pts.transpose(1, 0).contiguous()).transpose(1, 0).contiguous() + cur_joint_trans.unsqueeze(0) | |
# if len(cur_transformed_joint_pos) > 0: | |
# cur_transformed_joint_pos = torch.cat(cur_transformed_joint_pos, dim=0) | |
# cur_transformed_joint_pos = cur_transformed_joint_pos + cur_joint.origin_xyz.unsqueeze(0) | |
# cur_transformed_joint_pos = torch.matmul(cur_joint_rot, cur_transformed_joint_pos.transpose(1, 0).contiguous()).transpose(1, 0).contiguous() + cur_joint_trans.unsqueeze(0) | |
# cur_joint_pos = cur_joint_trans.unsqueeze(0).clone() | |
# cur_transformed_joint_pos = torch.cat( | |
# [cur_transformed_joint_pos, cur_joint_pos], dim=0 ##### joint poses ##### | |
# ) | |
# else: | |
# cur_transformed_joint_pos = cur_joint_trans.unsqueeze(0).clone() | |
# if len(joint_link_idxes) > 0: | |
# joint_link_idxes = torch.cat(joint_link_idxes, dim=-1) ### joint_link idxes ### | |
# cur_joint_idx = cur_child.link_idx | |
# joint_link_idxes = torch.cat( | |
# [joint_link_idxes, torch.tensor([cur_joint_idx], dtype=torch.long).cuda()], dim=-1 | |
# ) | |
# else: | |
# joint_link_idxes = torch.tensor([cur_child.link_idx], dtype=torch.long).cuda().view(1,) | |
visual_pts_list.append(cur_child_visual_pts) | |
# cur_child_verts = cur_child_verts + # transformed joint pos # | |
# cur_child_link_idxes = torch.cat(cur_child_link_idxes, dim=-1) | |
# # joint_link_idxes = torch.cat(joint_link_idxes, dim=-1) | |
# init_visual_meshes['vertices'].append(cur_child_verts) | |
# init_visual_meshes['faces'].append(cur_child_faces) | |
# init_visual_meshes['link_idxes'].append(cur_child_link_idxes) | |
# init_visual_meshes['transformed_joint_pos'].append(cur_transformed_joint_pos) | |
# init_visual_meshes['joint_link_idxes'].append(joint_link_idxes) | |
if self.visual is not None: | |
# get_transformed_visual_pts # | |
visual_pts_list = self.visual.get_transformed_visual_pts(visual_pts_list) | |
# for cur_link in self.children: | |
# cur_link_name = cur_link.name | |
# if cur_link_name in link_name_to_visited: # link name to visited # | |
# continue | |
# visual_pts_list = cur_link.get_transformed_visual_pts(visual_pts_list, link_name_to_visited, link_name_to_link_struct) | |
return visual_pts_list | |
# use both the articulated motion and the frre form | |
def set_initial_state(self, states, action_joint_name_to_joint_idx, link_name_to_visited, link_name_to_link_struct): | |
link_name_to_visited[self.name] = 1 | |
if self.joint is not None: | |
for cur_joint_name in self.joint: | |
cur_joint = self.joint[cur_joint_name] | |
cur_joint_name = cur_joint.name | |
cur_child = self.children[cur_joint_name] | |
cur_child_struct = link_name_to_link_struct[cur_child] | |
cur_child_name = cur_child_struct.name | |
if cur_child_name in link_name_to_visited: | |
continue | |
if cur_joint.type in ['revolute']: | |
cur_joint_idx = action_joint_name_to_joint_idx[cur_joint_name] # action joint name to joint idx # | |
# cur_joint_idx = action_joint_name_to_joint_idx[cur_joint_name] # | |
# cur_joint = self.joint[cur_joint_name] | |
cur_state = states[cur_joint_idx] ### joint state ### | |
cur_joint.set_initial_state(cur_state) | |
cur_child_struct.set_initial_state(states, action_joint_name_to_joint_idx, link_name_to_visited, link_name_to_link_struct) | |
def get_init_visual_meshes(self, parent_rot, parent_trans, init_visual_meshes, link_name_to_link_struct, link_name_to_visited): | |
link_name_to_visited[self.name] = 1 | |
# 'transformed_joint_pos': [], 'link_idxes': [] | |
if self.joint is not None: | |
# for i_ch, (cur_joint, cur_child) in enumerate(zip(self.joint, self.children)): | |
# print(f"joint: {cur_joint.name}, child: {cur_child.name}, parent: {self.name}, child_visual: {cur_child.visual is not None}") | |
# joint_origin_xyz = cur_joint.origin_xyz | |
# init_visual_meshes = cur_child.get_init_visual_meshes(parent_rot, parent_trans + joint_origin_xyz, init_visual_meshes) | |
# print(f"name: {self.name}, keys: {self.joint.keys()}") | |
for cur_joint_name in self.joint: # | |
cur_joint = self.joint[cur_joint_name] | |
cur_child_name = self.children[cur_joint_name] | |
cur_child = link_name_to_link_struct[cur_child_name] | |
# print(f"joint: {cur_joint.name}, child: {cur_child_name}, parent: {self.name}, child_visual: {cur_child.visual is not None}") | |
# print(f"joint: {cur_joint.name}, child: {cur_child_name}, parent: {self.name}, child_visual: {cur_child.visual is not None}") | |
joint_origin_xyz = cur_joint.origin_xyz | |
if cur_child_name in link_name_to_visited: | |
continue | |
cur_child_visual_pts = {'vertices': [], 'faces': [], 'link_idxes': [], 'transformed_joint_pos': [], 'joint_link_idxes': []} | |
cur_child_visual_pts = cur_child.get_init_visual_meshes(parent_rot, parent_trans + joint_origin_xyz, cur_child_visual_pts, link_name_to_link_struct, link_name_to_visited) | |
cur_child_verts, cur_child_faces = cur_child_visual_pts['vertices'], cur_child_visual_pts['faces'] | |
cur_child_link_idxes = cur_child_visual_pts['link_idxes'] | |
cur_transformed_joint_pos = cur_child_visual_pts['transformed_joint_pos'] | |
joint_link_idxes = cur_child_visual_pts['joint_link_idxes'] | |
if len(cur_child_verts) > 0: | |
cur_child_verts, cur_child_faces = merge_meshes(cur_child_verts, cur_child_faces) | |
cur_child_verts = cur_child_verts + cur_joint.origin_xyz.unsqueeze(0) | |
cur_joint_rot, cur_joint_trans = cur_joint.compute_transformation_from_current_state() | |
cur_child_verts = torch.matmul(cur_joint_rot, cur_child_verts.transpose(1, 0).contiguous()).transpose(1, 0).contiguous() + cur_joint_trans.unsqueeze(0) | |
if len(cur_transformed_joint_pos) > 0: | |
cur_transformed_joint_pos = torch.cat(cur_transformed_joint_pos, dim=0) | |
cur_transformed_joint_pos = cur_transformed_joint_pos + cur_joint.origin_xyz.unsqueeze(0) | |
cur_transformed_joint_pos = torch.matmul(cur_joint_rot, cur_transformed_joint_pos.transpose(1, 0).contiguous()).transpose(1, 0).contiguous() + cur_joint_trans.unsqueeze(0) | |
cur_joint_pos = cur_joint_trans.unsqueeze(0).clone() | |
cur_transformed_joint_pos = torch.cat( | |
[cur_transformed_joint_pos, cur_joint_pos], dim=0 ##### joint poses ##### | |
) | |
else: | |
cur_transformed_joint_pos = cur_joint_trans.unsqueeze(0).clone() | |
if len(joint_link_idxes) > 0: | |
joint_link_idxes = torch.cat(joint_link_idxes, dim=-1) ### joint_link idxes ### | |
cur_joint_idx = cur_child.link_idx | |
joint_link_idxes = torch.cat( | |
[joint_link_idxes, torch.tensor([cur_joint_idx], dtype=torch.long).cuda()], dim=-1 | |
) | |
else: | |
joint_link_idxes = torch.tensor([cur_child.link_idx], dtype=torch.long).cuda().view(1,) | |
# cur_child_verts = cur_child_verts + # transformed joint pos # | |
cur_child_link_idxes = torch.cat(cur_child_link_idxes, dim=-1) | |
# joint_link_idxes = torch.cat(joint_link_idxes, dim=-1) | |
init_visual_meshes['vertices'].append(cur_child_verts) | |
init_visual_meshes['faces'].append(cur_child_faces) | |
init_visual_meshes['link_idxes'].append(cur_child_link_idxes) | |
init_visual_meshes['transformed_joint_pos'].append(cur_transformed_joint_pos) | |
init_visual_meshes['joint_link_idxes'].append(joint_link_idxes) | |
# joint_origin_xyz = self.joint.origin_xyz | |
else: | |
joint_origin_xyz = torch.tensor([0., 0., 0.], dtype=torch.float32).cuda() | |
# self.parent_rot_mtx = parent_rot | |
# self.parent_trans_vec = parent_trans + joint_origin_xyz | |
if self.visual is not None: | |
init_visual_meshes = self.visual.get_init_visual_meshes(parent_rot, parent_trans, init_visual_meshes) | |
cur_visual_mesh_pts_nn = self.visual.vertices.size(0) | |
cur_link_idxes = torch.zeros((cur_visual_mesh_pts_nn, ), dtype=torch.long).cuda()+ self.link_idx | |
init_visual_meshes['link_idxes'].append(cur_link_idxes) | |
# for cur_link in self.children: # | |
# init_visual_meshes = cur_link.get_init_visual_meshes(self.parent_rot_mtx, self.parent_trans_vec, init_visual_meshes) | |
return init_visual_meshes ## init visual meshes ## | |
# calculate inerti | |
def calculate_inertia(self, link_name_to_visited, link_name_to_link_struct): | |
link_name_to_visited[self.name] = 1 | |
self.cur_inertia = torch.zeros((3, 3), dtype=torch.float32).cuda() | |
if self.joint is not None: | |
for joint_nm in self.joint: | |
cur_joint = self.joint[joint_nm] | |
cur_child = self.children[joint_nm] | |
cur_child_struct = link_name_to_link_struct[cur_child] | |
cur_child_name = cur_child_struct.name | |
if cur_child_name in link_name_to_visited: | |
continue | |
joint_rot, joint_trans = cur_joint.compute_transformation_from_current_state(n_grad=True) | |
# cur_parent_rot = torch.matmul(parent_rot, joint_rot) # | |
# cur_parent_trans = torch.matmul(parent_rot, joint_trans.unsqueeze(-1)).squeeze(-1) + parent_trans # | |
child_inertia = cur_child_struct.calculate_inertia(link_name_to_visited, link_name_to_link_struct) | |
child_inertia = torch.matmul( | |
joint_rot.detach(), torch.matmul(child_inertia, joint_rot.detach().transpose(1, 0).contiguous()) | |
).detach() | |
self.cur_inertia += child_inertia | |
# if self.visual is not None: | |
# self.cur_inertia += self.visual.inertia | |
self.cur_inertia += self.inertial.inertia.detach() | |
return self.cur_inertia | |
def set_delta_state_and_update(self, states, cur_timestep, link_name_to_visited, action_joint_name_to_joint_idx, link_name_to_link_struct): | |
link_name_to_visited[self.name] = 1 | |
if self.joint is not None: | |
for cur_joint_name in self.joint: | |
cur_joint = self.joint[cur_joint_name] # joint model | |
cur_child = self.children[cur_joint_name] # child model # | |
cur_child_struct = link_name_to_link_struct[cur_child] | |
cur_child_name = cur_child_struct.name | |
if cur_child_name in link_name_to_visited: | |
continue | |
## cur child inertia ## | |
# cur_child_inertia = cur_child_struct.cur_inertia | |
if cur_joint.type in ['revolute']: | |
cur_joint_idx = action_joint_name_to_joint_idx[cur_joint_name] | |
cur_state = states[cur_joint_idx] | |
### get the child struct ### | |
# set_actions_and_update_states(self, action, cur_timestep, time_cons, cur_inertia): | |
# set actions and update states # | |
cur_joint.set_delta_state_and_update(cur_state, cur_timestep) | |
cur_child_struct.set_delta_state_and_update(states, cur_timestep, link_name_to_visited, action_joint_name_to_joint_idx, link_name_to_link_struct) | |
# the joint # | |
# set_actions_and_update_states(actions, cur_timestep, time_cons, action_joint_name_to_joint_idx, link_name_to_visited, self.link_name_to_link_struct) | |
def set_actions_and_update_states(self, actions, cur_timestep, time_cons, action_joint_name_to_joint_idx, link_name_to_visited, link_name_to_link_struct): | |
link_name_to_visited[self.name] = 1 | |
# the current joint of the | |
if self.joint is not None: | |
for cur_joint_name in self.joint: | |
cur_joint = self.joint[cur_joint_name] # joint model | |
cur_child = self.children[cur_joint_name] # child model # | |
cur_child_struct = link_name_to_link_struct[cur_child] | |
cur_child_name = cur_child_struct.name | |
if cur_child_name in link_name_to_visited: | |
continue | |
cur_child_inertia = cur_child_struct.cur_inertia | |
if cur_joint.type in ['revolute']: | |
cur_joint_idx = action_joint_name_to_joint_idx[cur_joint_name] | |
cur_action = actions[cur_joint_idx] | |
### get the child struct ### | |
# set_actions_and_update_states(self, action, cur_timestep, time_cons, cur_inertia): | |
# set actions and update states # | |
cur_joint.set_actions_and_update_states(cur_action, cur_timestep, time_cons, cur_child_inertia.detach()) | |
cur_child_struct.set_actions_and_update_states(actions, cur_timestep, time_cons, action_joint_name_to_joint_idx, link_name_to_visited, link_name_to_link_struct) | |
def set_init_states_target_value(self, init_states): | |
if self.joint.type == 'revolute': | |
self.joint_angle = init_states[self.joint.joint_idx] | |
joint_axis = self.joint.axis | |
self.rot_vec = self.joint_angle * joint_axis | |
self.joint.state = torch.tensor([1, 0, 0, 0], dtype=torch.float32).cuda() | |
self.joint.state = self.joint.state + update_quaternion(self.rot_vec, self.joint.state) | |
self.joint.timestep_to_states[0] = self.joint.state.detach() | |
self.joint.timestep_to_vels[0] = torch.zeros((3,), dtype=torch.float32).cuda().detach() ## velocity ## | |
for cur_link in self.children: | |
cur_link.set_init_states_target_value(init_states) | |
# should forward for one single step -> use the action # | |
def set_init_states(self, ): | |
self.joint.state = torch.tensor([1, 0, 0, 0], dtype=torch.float32).cuda() | |
self.joint.timestep_to_states[0] = self.joint.state.detach() | |
self.joint.timestep_to_vels[0] = torch.zeros((3,), dtype=torch.float32).cuda().detach() ## velocity ## | |
for cur_link in self.children: | |
cur_link.set_init_states() | |
def get_visual_pts(self, visual_pts_list): | |
visual_pts_list = self.body.get_visual_pts(visual_pts_list) | |
for cur_link in self.children: | |
visual_pts_list = cur_link.get_visual_pts(visual_pts_list) | |
visual_pts_list = torch.cat(visual_pts_list, dim=0) | |
return visual_pts_list | |
def get_visual_faces_list(self, visual_faces_list): | |
visual_faces_list = self.body.get_visual_faces_list(visual_faces_list) | |
for cur_link in self.children: | |
visual_faces_list = cur_link.get_visual_faces_list(visual_faces_list) | |
return visual_faces_list | |
# pass | |
def set_state(self, name_to_state): | |
self.joint.set_state(name_to_state=name_to_state) | |
for child_link in self.children: | |
child_link.set_state(name_to_state) | |
def set_state_via_vec(self, state_vec): | |
self.joint.set_state_via_vec(state_vec) | |
for child_link in self.children: | |
child_link.set_state_via_vec(state_vec) | |
class Joint_Limit: | |
def __init__(self, effort, lower, upper, velocity) -> None: | |
self.effort = effort | |
self.lower = lower | |
self.velocity = velocity | |
self.upper = upper | |
pass | |
# Joint_urdf(name, joint_type, parent_link, child_link, origin_xyz, axis_xyz, limit: Joint_Limit) | |
class Joint_urdf: # | |
def __init__(self, name, joint_type, parent_link, child_link, origin_xyz, axis_xyz, limit: Joint_Limit) -> None: | |
self.name = name | |
self.type = joint_type | |
self.parent_link = parent_link | |
self.child_link = child_link | |
self.origin_xyz = origin_xyz | |
self.axis_xyz = axis_xyz | |
self.limit = limit | |
# joint angle; joint state # | |
self.timestep_to_vels = {} | |
self.timestep_to_states = {} | |
self.init_pos = self.origin_xyz.clone() | |
#### only for the current state #### # joint urdf # | |
self.state = nn.Parameter( | |
torch.tensor([1., 0., 0., 0.], dtype=torch.float32, requires_grad=True).cuda(), requires_grad=True | |
) | |
self.action = nn.Parameter( | |
torch.zeros((1,), dtype=torch.float32, requires_grad=True).cuda(), requires_grad=True | |
) | |
# self.rot_mtx = np.eye(3, dtypes=np.float32) | |
# self.trans_vec = np.zeros((3,), dtype=np.float32) ## rot m | |
self.rot_mtx = nn.Parameter(torch.eye(n=3, dtype=torch.float32, requires_grad=True).cuda(), requires_grad=True) | |
self.trans_vec = nn.Parameter(torch.zeros((3,), dtype=torch.float32, requires_grad=True).cuda(), requires_grad=True) | |
def set_initial_state(self, state): | |
# joint angle as the state value # | |
self.timestep_to_vels[0] = torch.zeros((3,), dtype=torch.float32).cuda().detach() ## velocity ## | |
delta_rot_vec = self.axis_xyz * state | |
# self.timestep_to_states[0] = state.detach() | |
cur_state = torch.tensor([1., 0., 0., 0.], dtype=torch.float32).cuda() | |
init_state = cur_state + update_quaternion(delta_rot_vec, cur_state) | |
self.timestep_to_states[0] = init_state.detach() | |
self.state = init_state | |
def set_delta_state_and_update(self, state, cur_timestep): | |
self.timestep_to_vels[cur_timestep] = torch.zeros((3,), dtype=torch.float32).cuda().detach() | |
delta_rot_vec = self.axis_xyz * state | |
if cur_timestep == 0: | |
prev_state = torch.tensor([1., 0., 0., 0.], dtype=torch.float32).cuda() | |
else: | |
prev_state = self.timestep_to_states[cur_timestep - 1].detach() | |
cur_state = prev_state + update_quaternion(delta_rot_vec, prev_state) | |
self.timestep_to_states[cur_timestep] = cur_state.detach() | |
self.state = cur_state | |
def compute_transformation_from_current_state(self, n_grad=False): | |
# together with the parent rot mtx and the parent trans vec # | |
# cur_joint_state = self.state | |
if self.type == "revolute": | |
# rot_mtx = rotation_matrix_from_axis_angle(self.axis, cur_joint_state) | |
# trans_vec = self.pos - np.matmul(rot_mtx, self.pos.reshape(3, 1)).reshape(3) | |
if n_grad: | |
rot_mtx = quaternion_to_matrix(self.state.detach()) | |
else: | |
rot_mtx = quaternion_to_matrix(self.state) | |
# trans_vec = self.pos - torch.matmul(rot_mtx, self.pos.view(3, 1)).view(3).contiguous() | |
trans_vec = self.origin_xyz - torch.matmul(rot_mtx, self.origin_xyz.view(3, 1)).view(3).contiguous() | |
self.rot_mtx = rot_mtx | |
self.trans_vec = trans_vec | |
elif self.type == "fixed": | |
rot_mtx = torch.eye(3, dtype=torch.float32).cuda() | |
trans_vec = torch.zeros((3,), dtype=torch.float32).cuda() | |
# trans_vec = self.origin_xyz | |
self.rot_mtx = rot_mtx | |
self.trans_vec = trans_vec # | |
else: | |
pass | |
return self.rot_mtx, self.trans_vec | |
# set actions # set actions and udpate states # | |
def set_actions_and_update_states(self, action, cur_timestep, time_cons, cur_inertia): | |
# timestep_to_vels, timestep_to_states, state # | |
if self.type in ['revolute']: | |
self.action = action | |
# | |
# visual_pts and visual_pts_mass # | |
# cur_joint_pos = self.joint.pos # | |
# TODO: check whether the following is correct # | |
torque = self.action * self.axis_xyz | |
# # Compute inertia matrix # | |
# inertial = torch.zeros((3, 3), dtype=torch.float32).cuda() | |
# for i_pts in range(self.visual_pts.size(0)): | |
# cur_pts = self.visual_pts[i_pts] | |
# cur_pts_mass = self.visual_pts_mass[i_pts] | |
# cur_r = cur_pts - cur_joint_pos # r_i | |
# # cur_vert = init_passive_mesh[i_v] | |
# # cur_r = cur_vert - init_passive_mesh_center | |
# dot_r_r = torch.sum(cur_r * cur_r) | |
# cur_eye_mtx = torch.eye(3, dtype=torch.float32).cuda() | |
# r_mult_rT = torch.matmul(cur_r.unsqueeze(-1), cur_r.unsqueeze(0)) | |
# inertial += (dot_r_r * cur_eye_mtx - r_mult_rT) * cur_pts_mass | |
# m = torch.sum(self.visual_pts_mass) | |
# # Use torque to update angular velocity -> state # | |
# inertia_inv = torch.linalg.inv(inertial) | |
# axis-angle of | |
# inertia_inv = self.cur_inertia_inv | |
# print(f"updating actions and states for the joint {self.name} with type {self.type}") | |
inertia_inv = torch.linalg.inv(cur_inertia).detach() | |
delta_omega = torch.matmul(inertia_inv, torque.unsqueeze(-1)).squeeze(-1) | |
# delta_omega = torque / 400 # | |
# timestep_to_vels, timestep_to_states, state # | |
# TODO: dt should be an optimizable constant? should it be the same value as that optimized for the passive object? # | |
delta_angular_vel = delta_omega * time_cons # * self.args.dt | |
delta_angular_vel = delta_angular_vel.squeeze(0) | |
if cur_timestep > 0: ## cur_timestep - 1 ## | |
prev_angular_vel = self.timestep_to_vels[cur_timestep - 1].detach() | |
cur_angular_vel = prev_angular_vel + delta_angular_vel * DAMPING | |
else: | |
cur_angular_vel = delta_angular_vel | |
self.timestep_to_vels[cur_timestep] = cur_angular_vel.detach() | |
cur_delta_quat = cur_angular_vel * time_cons # * self.args.dt | |
cur_delta_quat = cur_delta_quat.squeeze(0) | |
cur_state = self.timestep_to_states[cur_timestep].detach() # quaternion # | |
# print(f"cur_delta_quat: {cur_delta_quat.size()}, cur_state: {cur_state.size()}") | |
nex_state = cur_state + update_quaternion(cur_delta_quat, cur_state) | |
self.timestep_to_states[cur_timestep + 1] = nex_state.detach() | |
self.state = nex_state # set the joint state # | |
# get_transformed_visual_pts() --- transformed_visual_pts ## | |
# use the transformed visual # the articulated motion field # | |
# then we should add the free motion field here # # add the free motion field # # hwo to use that? # | |
# another rules for optimizing articulation motion field # | |
# -> the articulated model predicted transformations # | |
# -> the free motion field -> the motion field predicted by the network for each timestep -> an implicit motion field # | |
class Robot_urdf: | |
def __init__(self, links, link_name_to_link_idxes, link_name_to_link_struct, joint_name_to_joint_idx, actions_joint_name_to_joint_idx) -> None: | |
self.links = links | |
self.link_name_to_link_idxes = link_name_to_link_idxes | |
self.link_name_to_link_struct = link_name_to_link_struct | |
# joint_name_to_joint_idx, actions_joint_name_to_joint_idx | |
self.joint_name_to_joint_idx = joint_name_to_joint_idx | |
self.actions_joint_name_to_joint_idx = actions_joint_name_to_joint_idx | |
# | |
# particles | |
# sample particles | |
# how to sample particles? | |
# how to expand the particles? # -> you can use weights in the model dict # | |
# from grids and jample from grids # | |
# link idx to the | |
# robot # | |
# init vertices, init faces # | |
# expande the aprticles # | |
# expanede particles # | |
# use particles to conduct the simulation # | |
self.init_vertices, self.init_faces = self.get_init_visual_pts() | |
init_visual_pts_sv_fn = "robot_expanded_visual_pts.npy" | |
np.save(init_visual_pts_sv_fn, self.init_vertices.detach().cpu().numpy()) | |
joint_name_to_joint_idx_sv_fn = "mano_joint_name_to_joint_idx.npy" | |
np.save(joint_name_to_joint_idx_sv_fn, self.joint_name_to_joint_idx) | |
actions_joint_name_to_joint_idx_sv_fn = "mano_actions_joint_name_to_joint_idx.npy" | |
np.save(actions_joint_name_to_joint_idx_sv_fn, self.actions_joint_name_to_joint_idx) | |
tot_joints = len(self.joint_name_to_joint_idx) | |
tot_actions_joints = len(self.actions_joint_name_to_joint_idx) | |
print(f"tot_joints: {tot_joints}, tot_actions_joints: {tot_actions_joints}") | |
pass | |
def expand_visual_pts(self, ): | |
link_name_to_visited = {} | |
# transform the visual pts # | |
# action_joint_name_to_joint_idx = self.actions_joint_name_to_joint_idx | |
palm_idx = self.link_name_to_link_idxes["palm"] | |
palm_link = self.links[palm_idx] | |
expanded_visual_pts = [] | |
# expanded the visual pts # # transformed viusal pts # or the translations of the visual pts # | |
expanded_visual_pts = palm_link.expand_visual_pts(expanded_visual_pts, link_name_to_visited, self.link_name_to_link_struct) | |
expanded_visual_pts = torch.cat(expanded_visual_pts, dim=0) | |
# pass | |
return expanded_visual_pts | |
# get_transformed_visual_pts() # get_transformed_visual_pts of the visual pts ### get_transformed_visual_pts ## get_transformed_visual_pts ### # | |
def get_transformed_visual_pts(self, ): | |
init_visual_pts = [] | |
link_name_to_visited = {} | |
palm_idx = self.link_name_to_link_idxes["palm"] | |
palm_link = self.links[palm_idx] | |
### init_visual_pts # from the pal mink to get the total transformed visual pts ## | |
init_visual_pts = palm_link.get_transformed_visual_pts(init_visual_pts, link_name_to_visited, self.link_name_to_link_struct) | |
init_visual_pts = torch.cat(init_visual_pts, dim=0) ## get the inita visual pts from the palm link ### | |
return init_visual_pts | |
### samping issue? --- TODO` ` | |
def get_init_visual_pts(self, ): | |
init_visual_meshes = { | |
'vertices': [], 'faces': [], 'link_idxes': [], 'transformed_joint_pos': [], 'link_idxes': [], 'transformed_joint_pos': [], 'joint_link_idxes': [] | |
} | |
init_parent_rot = torch.eye(3, dtype=torch.float32).cuda() | |
init_parent_trans = torch.zeros((3,), dtype=torch.float32).cuda() | |
palm_idx = self.link_name_to_link_idxes["palm"] | |
palm_link = self.links[palm_idx] | |
link_name_to_visited = {} | |
init_visual_meshes = palm_link.get_init_visual_meshes(init_parent_rot, init_parent_trans, init_visual_meshes, self.link_name_to_link_struct, link_name_to_visited) | |
self.link_idxes = torch.cat(init_visual_meshes['link_idxes'], dim=-1) | |
self.transformed_joint_pos = torch.cat(init_visual_meshes['transformed_joint_pos'], dim=0) | |
self.joint_link_idxes = torch.cat(init_visual_meshes['joint_link_idxes'], dim=-1) ### | |
# for cur_link in self.links: | |
# init_visual_meshes = cur_link.get_init_visual_meshes(init_parent_rot, init_parent_trans, init_visual_meshes, self.link_name_to_link_struct, link_name_to_visited) | |
init_vertices, init_faces = merge_meshes(init_visual_meshes['vertices'], init_visual_meshes['faces']) | |
return init_vertices, init_faces | |
def set_delta_state_and_update(self, states, cur_timestep): | |
link_name_to_visited = {} | |
action_joint_name_to_joint_idx = self.actions_joint_name_to_joint_idx | |
palm_idx = self.link_name_to_link_idxes["palm"] | |
palm_link = self.links[palm_idx] | |
link_name_to_visited = {} | |
palm_link.set_delta_state_and_update(states, cur_timestep, link_name_to_visited, action_joint_name_to_joint_idx, self.link_name_to_link_struct) | |
# cur_joint.set_actions_and_update_states(cur_action, cur_timestep, time_cons, cur_child_inertia) | |
def set_actions_and_update_states(self, actions, cur_timestep, time_cons,): | |
# actions | |
# self.actions_joint_name_to_joint_idx as the action joint name to joint idx | |
link_name_to_visited = {} | |
action_joint_name_to_joint_idx = self.actions_joint_name_to_joint_idx | |
palm_idx = self.link_name_to_link_idxes["palm"] | |
palm_link = self.links[palm_idx] | |
link_name_to_visited = {} | |
palm_link.set_actions_and_update_states(actions, cur_timestep, time_cons, action_joint_name_to_joint_idx, link_name_to_visited, self.link_name_to_link_struct) | |
# for cur_joint in | |
# for cur_link in self.links: | |
# if cur_link.joint is not None: | |
# for cur_joint_nm in cur_link.joint: | |
# if cur_link.joint[cur_joint_nm].type in ['revolute']: | |
# cur_link_joint_name = cur_link.joint[cur_joint_nm].name | |
# cur_link_joint_idx = self.actions_joint_name_to_joint_idx[cur_link_joint_name] | |
# for cur_link in self.links: | |
# cur_link.set_actions_and_update_states(actions, cur_timestep, time_cons, action_joint_name_to_joint_idx, link_name_to_visited, self.link_name_to_link_struct) | |
### TODO: add the contact torque when calculating the nextstep states ### | |
### TODO: not an accurate implementation since differen joints should be jconsidered for one single link ### | |
### TODO: the articulated force modle is not so easy as this one .... ### | |
def set_contact_forces(self, hard_selected_forces, hard_selected_manipulating_points, hard_selected_sampled_input_pts_idxes): | |
# transformed_joint_pos, joint_link_idxes, link_idxes # | |
selected_pts_link_idxes = self.link_idxes[hard_selected_sampled_input_pts_idxes] | |
# use the selected link idxes # | |
# selected pts idxes # | |
# self.joint_link_idxes, transformed_joint_pos # | |
self.link_idx_to_transformed_joint_pos = {} | |
for i_link in range(self.transformed_joint_pos.size(0)): | |
cur_link_idx = self.link_idxes[i_link].item() | |
cur_link_pos = self.transformed_joint_pos[i_link] | |
# if cur_link_idx not in self.link_idx_to_transformed_joint_pos: | |
self.link_idx_to_transformed_joint_pos[cur_link_idx] = cur_link_pos | |
# self.link_idx_to_transformed_joint_pos[cur_link_idx].append(cur_link_pos) | |
# from the | |
self.link_idx_to_contact_forces = {} | |
for i_c_pts in range(hard_selected_forces.size(0)): | |
cur_contact_force = hard_selected_forces[i_c_pts] ## | |
cur_link_idx = selected_pts_link_idxes[i_c_pts].item() | |
cur_link_pos = self.link_idx_to_transformed_joint_pos[cur_link_idx] | |
cur_link_action_pos = hard_selected_manipulating_points[i_c_pts] | |
# (action_pos - link_pos) x (-contact_force) # | |
cur_contact_torque = torch.cross( | |
cur_link_action_pos - cur_link_pos, -cur_contact_force | |
) | |
if cur_link_idx not in self.link_idx_to_contact_forces: | |
self.link_idx_to_contact_forces[cur_link_idx] = [cur_contact_torque] | |
else: | |
self.link_idx_to_contact_forces[cur_link_idx].append(cur_contact_torque) | |
for link_idx in self.link_idx_to_contact_forces: | |
self.link_idx_to_contact_forces[link_idx] = torch.stack(self.link_idx_to_contact_forces[link_idx], dim=0) | |
self.link_idx_to_contact_forces[link_idx] = torch.sum(self.link_idx_to_contact_forces[link_idx] , dim=0) | |
for link_idx, link_struct in enumerate(self.links): | |
if link_idx in self.link_idx_to_contact_forces: | |
cur_link_contact_force = self.link_idx_to_contact_forces[link_idx] | |
link_struct.contact_torque = cur_link_contact_force | |
else: | |
link_struct.contact_torque = None | |
# def se ### from the optimizable initial states ### | |
def set_initial_state(self, states): | |
action_joint_name_to_joint_idx = self.actions_joint_name_to_joint_idx | |
link_name_to_visited = {} | |
palm_idx = self.link_name_to_link_idxes["palm"] | |
palm_link = self.links[palm_idx] | |
link_name_to_visited = {} | |
palm_link.set_initial_state(states, action_joint_name_to_joint_idx, link_name_to_visited, self.link_name_to_link_struct) | |
# for cur_link in self.links: | |
# cur_link.set_initial_state(states, action_joint_name_to_joint_idx, link_name_to_visited, self.link_name_to_link_struct) | |
### after each timestep -> re-calculate the inertial matrix using the current simulated states and the set the new actiosn and forward the simulation # | |
def calculate_inertia(self): | |
link_name_to_visited = {} | |
palm_idx = self.link_name_to_link_idxes["palm"] | |
palm_link = self.links[palm_idx] | |
link_name_to_visited = {} | |
palm_link.calculate_inertia(link_name_to_visited, self.link_name_to_link_struct) | |
# for cur_link in self.links: | |
# cur_link.calculate_inertia(link_name_to_visited, self.link_name_to_link_struct) | |
def parse_nparray_from_string(strr, args=None): | |
vals = strr.split(" ") | |
vals = [float(val) for val in vals] | |
vals = np.array(vals, dtype=np.float32) | |
vals = torch.from_numpy(vals).float() | |
## vals ## | |
vals = nn.Parameter(vals.cuda(), requires_grad=True) | |
return vals | |
### parse link data ### | |
def parse_link_data(link, args): | |
link_name = link.attrib["name"] | |
# print(f"parsing link: {link_name}") ## joints body meshes # | |
joint = link.find("./joint") | |
joint_name = joint.attrib["name"] | |
joint_type = joint.attrib["type"] | |
if joint_type in ["revolute"]: ## a general xml parser here? | |
axis = joint.attrib["axis"] | |
axis = parse_nparray_from_string(axis, args=args) | |
else: | |
axis = None | |
pos = joint.attrib["pos"] # | |
pos = parse_nparray_from_string(pos, args=args) | |
quat = joint.attrib["quat"] | |
quat = parse_nparray_from_string(quat, args=args) | |
try: | |
frame = joint.attrib["frame"] | |
except: | |
frame = "WORLD" | |
if joint_type not in ["fixed"]: | |
damping = joint.attrib["damping"] | |
damping = float(damping) | |
else: | |
damping = 0.0 | |
cur_joint = Joint(joint_name, joint_type, axis, pos, quat, frame, damping, args=args) | |
body = link.find("./body") | |
body_name = body.attrib["name"] | |
body_type = body.attrib["type"] | |
if body_type == "mesh": | |
filename = body.attrib["filename"] | |
else: | |
filename = "" | |
if body_type == "sphere": | |
radius = body.attrib["radius"] | |
radius = float(radius) | |
else: | |
radius = 0. | |
pos = body.attrib["pos"] | |
pos = parse_nparray_from_string(pos, args=args) | |
quat = body.attrib["quat"] | |
quat = joint.attrib["quat"] | |
try: | |
transform_type = body.attrib["transform_type"] | |
except: | |
transform_type = "OBJ_TO_WORLD" | |
density = body.attrib["density"] | |
density = float(density) | |
mu = body.attrib["mu"] | |
mu = float(mu) | |
try: ## rgba ## | |
rgba = body.attrib["rgba"] | |
rgba = parse_nparray_from_string(rgba, args=args) | |
except: | |
rgba = np.zeros((4,), dtype=np.float32) | |
cur_body = Body(body_name, body_type, filename, pos, quat, transform_type, density, mu, rgba, radius, args=args) | |
children_link = [] | |
links = link.findall("./link") | |
for child_link in links: # | |
cur_child_link = parse_link_data(child_link, args=args) | |
children_link.append(cur_child_link) | |
link_name = link.attrib["name"] | |
link_obj = Link(link_name, joint=cur_joint, body=cur_body, children=children_link, args=args) | |
return link_obj | |
### parse link data ### | |
def parse_link_data_urdf(link): | |
link_name = link.attrib["name"] | |
# print(f"parsing link: {link_name}") ## joints body meshes # | |
inertial = link.find("./inertial") | |
origin = inertial.find("./origin") | |
inertial_pos = origin.attrib["xyz"] | |
inertial_pos = parse_nparray_from_string(inertial_pos) | |
inertial_rpy = origin.attrib["rpy"] | |
inertial_rpy = parse_nparray_from_string(inertial_rpy) | |
inertial_mass = inertial.find("./mass") | |
inertial_mass = inertial_mass.attrib["value"] | |
inertial_inertia = inertial.find("./inertia") | |
inertial_ixx = inertial_inertia.attrib["ixx"] | |
inertial_ixx = float(inertial_ixx) | |
inertial_ixy = inertial_inertia.attrib["ixy"] | |
inertial_ixy = float(inertial_ixy) | |
inertial_ixz = inertial_inertia.attrib["ixz"] | |
inertial_ixz = float(inertial_ixz) | |
inertial_iyy = inertial_inertia.attrib["iyy"] | |
inertial_iyy = float(inertial_iyy) | |
inertial_iyz = inertial_inertia.attrib["iyz"] | |
inertial_iyz = float(inertial_iyz) | |
inertial_izz = inertial_inertia.attrib["izz"] | |
inertial_izz = float(inertial_izz) | |
inertial_inertia_mtx = torch.zeros((3, 3), dtype=torch.float32).cuda() | |
inertial_inertia_mtx[0, 0] = inertial_ixx | |
inertial_inertia_mtx[0, 1] = inertial_ixy | |
inertial_inertia_mtx[0, 2] = inertial_ixz | |
inertial_inertia_mtx[1, 0] = inertial_ixy | |
inertial_inertia_mtx[1, 1] = inertial_iyy | |
inertial_inertia_mtx[1, 2] = inertial_iyz | |
inertial_inertia_mtx[2, 0] = inertial_ixz | |
inertial_inertia_mtx[2, 1] = inertial_iyz | |
inertial_inertia_mtx[2, 2] = inertial_izz | |
# [xx, xy, xz] # | |
# [0, yy, yz] # | |
# [0, 0, zz] # | |
# a strange inertia value ... # | |
# TODO: how to compute the inertia matrix? # | |
visual = link.find("./visual") | |
if visual is not None: | |
origin = visual.find("./origin") | |
visual_pos = origin.attrib["xyz"] | |
visual_pos = parse_nparray_from_string(visual_pos) | |
visual_rpy = origin.attrib["rpy"] | |
visual_rpy = parse_nparray_from_string(visual_rpy) | |
geometry = visual.find("./geometry") | |
geometry_mesh = geometry.find("./mesh") | |
mesh_fn = geometry_mesh.attrib["filename"] | |
mesh_scale = geometry_mesh.attrib["scale"] | |
mesh_scale = parse_nparray_from_string(mesh_scale) | |
mesh_fn = str(mesh_fn) | |
link_struct = Link_urdf(name=link_name, inertial=Inertial(origin_rpy=inertial_rpy, origin_xyz=inertial_pos, mass=inertial_mass, inertia=inertial_inertia_mtx), visual=Visual(visual_rpy=visual_rpy, visual_xyz=visual_pos, geometry_mesh_fn=mesh_fn, geometry_mesh_scale=mesh_scale) if visual is not None else None) | |
return link_struct | |
def parse_joint_data_urdf(joint): | |
joint_name = joint.attrib["name"] | |
joint_type = joint.attrib["type"] | |
parent = joint.find("./parent") | |
child = joint.find("./child") | |
parent_name = parent.attrib["link"] | |
child_name = child.attrib["link"] | |
joint_origin = joint.find("./origin") | |
# if joint_origin. | |
try: | |
origin_xyz = joint_origin.attrib["xyz"] | |
origin_xyz = parse_nparray_from_string(origin_xyz) | |
except: | |
origin_xyz = torch.tensor([0., 0., 0.], dtype=torch.float32).cuda() | |
joint_axis = joint.find("./axis") | |
if joint_axis is not None: | |
joint_axis = joint_axis.attrib["xyz"] | |
joint_axis = parse_nparray_from_string(joint_axis) | |
else: | |
joint_axis = torch.tensor([1, 0., 0.], dtype=torch.float32).cuda() | |
joint_limit = joint.find("./limit") | |
if joint_limit is not None: | |
joint_lower = joint_limit.attrib["lower"] | |
joint_lower = float(joint_lower) | |
joint_upper = joint_limit.attrib["upper"] | |
joint_upper = float(joint_upper) | |
joint_effort = joint_limit.attrib["effort"] | |
joint_effort = float(joint_effort) | |
joint_velocity = joint_limit.attrib["velocity"] | |
joint_velocity = float(joint_velocity) | |
else: | |
joint_lower = -0.5000 | |
joint_upper = 1.57 | |
joint_effort = 1000 | |
joint_velocity = 0.5 | |
# cosntruct the joint data # | |
joint_limit = Joint_Limit(effort=joint_effort, lower=joint_lower, upper=joint_upper, velocity=joint_velocity) | |
cur_joint_struct = Joint_urdf(joint_name, joint_type, parent_name, child_name, origin_xyz, joint_axis, joint_limit) | |
return cur_joint_struct | |
def parse_data_from_urdf(xml_fn): | |
tree = ElementTree() | |
tree.parse(xml_fn) | |
print(f"{xml_fn}") | |
### get total robots ### | |
# robots = tree.findall("link") | |
cur_robot = tree | |
# i_robot = 0 # | |
# tot_robots = [] # | |
# for cur_robot in robots: # | |
# print(f"Getting robot: {i_robot}") # | |
# i_robot += 1 # | |
# print(f"len(robots): {len(robots)}") # | |
# cur_robot = robots[0] # | |
cur_links = cur_robot.findall("./link") | |
# i_link = 0 | |
link_name_to_link_idxes = {} | |
cur_robot_links = [] | |
link_name_to_link_struct = {} | |
for i_link_idx, cur_link in enumerate(cur_links): | |
cur_link_struct = parse_link_data_urdf(cur_link) | |
print(f"Adding link {cur_link_struct.name}") | |
cur_link_struct.link_idx = i_link_idx | |
cur_robot_links.append(cur_link_struct) | |
link_name_to_link_idxes[cur_link_struct.name] = i_link_idx | |
link_name_to_link_struct[cur_link_struct.name] = cur_link_struct | |
# for cur_link in cur_links: | |
# cur_robot_links.append(parse_link_data_urdf(cur_link, args=args)) | |
print(f"link_name_to_link_struct: {len(link_name_to_link_struct)}, ") | |
tot_robot_joints = [] | |
joint_name_to_joint_idx = {} | |
actions_joint_name_to_joint_idx = {} | |
cur_joints = cur_robot.findall("./joint") | |
for i_joint, cur_joint in enumerate(cur_joints): | |
cur_joint_struct = parse_joint_data_urdf(cur_joint) | |
cur_joint_parent_link = cur_joint_struct.parent_link | |
cur_joint_child_link = cur_joint_struct.child_link | |
cur_joint_idx = len(tot_robot_joints) | |
cur_joint_name = cur_joint_struct.name | |
joint_name_to_joint_idx[cur_joint_name] = cur_joint_idx | |
cur_joint_type = cur_joint_struct.type | |
if cur_joint_type in ['revolute']: | |
actions_joint_name_to_joint_idx[cur_joint_name] = cur_joint_idx | |
#### add the current joint to tot joints ### | |
tot_robot_joints.append(cur_joint_struct) | |
parent_link_idx = link_name_to_link_idxes[cur_joint_parent_link] | |
cur_parent_link_struct = cur_robot_links[parent_link_idx] | |
child_link_idx = link_name_to_link_idxes[cur_joint_child_link] | |
cur_child_link_struct = cur_robot_links[child_link_idx] | |
# parent link struct # | |
if link_name_to_link_struct[cur_joint_parent_link].joint is not None: | |
link_name_to_link_struct[cur_joint_parent_link].joint[cur_joint_struct.name] = cur_joint_struct | |
link_name_to_link_struct[cur_joint_parent_link].children[cur_joint_struct.name] = cur_child_link_struct.name | |
# cur_child_link_struct | |
# cur_parent_link_struct.joint.append(cur_joint_struct) | |
# cur_parent_link_struct.children.append(cur_child_link_struct) | |
else: | |
link_name_to_link_struct[cur_joint_parent_link].joint = { | |
cur_joint_struct.name: cur_joint_struct | |
} | |
link_name_to_link_struct[cur_joint_parent_link].children = { | |
cur_joint_struct.name: cur_child_link_struct.name | |
# cur_child_link_struct | |
} | |
# cur_parent_link_struct.joint = [cur_joint_struct] | |
# cur_parent_link_struct.children.append(cur_child_link_struct) | |
# pass | |
cur_robot_obj = Robot_urdf(cur_robot_links, link_name_to_link_idxes, link_name_to_link_struct, joint_name_to_joint_idx, actions_joint_name_to_joint_idx) | |
# tot_robots.append(cur_robot_obj) | |
# for the joint robots # | |
# for every joint | |
# tot_actuators = [] | |
# actuators = tree.findall("./actuator/motor") | |
# joint_nm_to_joint_idx = {} | |
# i_act = 0 | |
# for cur_act in actuators: | |
# cur_act_joint_nm = cur_act.attrib["joint"] | |
# joint_nm_to_joint_idx[cur_act_joint_nm] = i_act | |
# i_act += 1 ### add the act ### | |
# tot_robots[0].set_joint_idx(joint_nm_to_joint_idx) ### set joint idx here ### # tot robots # | |
# tot_robots[0].get_nn_pts() | |
# tot_robots[1].get_nn_pts() | |
return cur_robot_obj | |
def get_name_to_state_from_str(states_str): | |
tot_states = states_str.split(" ") | |
tot_states = [float(cur_state) for cur_state in tot_states] | |
joint_name_to_state = {} | |
for i in range(len(tot_states)): | |
cur_joint_name = f"joint{i + 1}" | |
cur_joint_state = tot_states[i] | |
joint_name_to_state[cur_joint_name] = cur_joint_state | |
return joint_name_to_state | |
def merge_meshes(verts_list, faces_list): | |
nn_verts = 0 | |
tot_verts_list = [] | |
tot_faces_list = [] | |
for i_vv, cur_verts in enumerate(verts_list): | |
cur_verts_nn = cur_verts.size(0) | |
tot_verts_list.append(cur_verts) | |
tot_faces_list.append(faces_list[i_vv] + nn_verts) | |
nn_verts = nn_verts + cur_verts_nn | |
tot_verts_list = torch.cat(tot_verts_list, dim=0) | |
tot_faces_list = torch.cat(tot_faces_list, dim=0) | |
return tot_verts_list, tot_faces_list | |
class RobotAgent: # robot and the robot # | |
def __init__(self, xml_fn) -> None: | |
self.xml_fn = xml_fn | |
# self.args = args | |
## | |
active_robot = parse_data_from_urdf(xml_fn) | |
self.time_constant = nn.Embedding( | |
num_embeddings=3, embedding_dim=1 | |
).cuda() | |
torch.nn.init.ones_(self.time_constant.weight) # | |
self.time_constant.weight.data = self.time_constant.weight.data * 0.2 ### time_constant data # | |
self.optimizable_actions = nn.Embedding( | |
num_embeddings=100, embedding_dim=60, | |
).cuda() | |
torch.nn.init.zeros_(self.optimizable_actions.weight) # | |
self.learning_rate = 5e-4 | |
self.active_robot = active_robot | |
# # get init states # # | |
self.set_init_states() | |
init_visual_pts = self.get_init_state_visual_pts() | |
self.init_visual_pts = init_visual_pts | |
def set_init_states_target_value(self, init_states): | |
# glb_rot = torch.eye(n=3, dtype=torch.float32).cuda() | |
# glb_trans = torch.zeros((3,), dtype=torch.float32).cuda() ### glb_trans #### and the rot 3## | |
# tot_init_states = {} | |
# tot_init_states['glb_rot'] = glb_rot; | |
# tot_init_states['glb_trans'] = glb_trans; | |
# tot_init_states['links_init_states'] = init_states | |
# self.active_robot.set_init_states_target_value(tot_init_states) | |
# init_joint_states = torch.zeros((60, ), dtype=torch.float32).cuda() | |
self.active_robot.set_initial_state(init_states) | |
def set_init_states(self): | |
# glb_rot = torch.eye(n=3, dtype=torch.float32).cuda() | |
# glb_trans = torch.zeros((3,), dtype=torch.float32).cuda() ### glb_trans #### and the rot 3## | |
# ### random rotation ### | |
# # glb_rot_np = R.random().as_matrix() | |
# # glb_rot = torch.from_numpy(glb_rot_np).float().cuda() | |
# ### random rotation ### | |
# # glb_rot, glb_trans # | |
# init_states = {} # init states # | |
# init_states['glb_rot'] = glb_rot; # | |
# init_states['glb_trans'] = glb_trans; | |
# self.active_robot.set_init_states(init_states) | |
init_joint_states = torch.zeros((60, ), dtype=torch.float32).cuda() | |
self.active_robot.set_initial_state(init_joint_states) | |
def get_init_state_visual_pts(self, ): | |
# visual_pts_list = [] # compute the transformation via current state # | |
# visual_pts_list, visual_pts_mass_list = self.active_robot.compute_transformation_via_current_state( visual_pts_list) | |
cur_verts, cur_faces = self.active_robot.get_init_visual_pts() | |
self.faces = cur_faces | |
# init_visual_pts = visual_pts_list | |
return cur_verts | |
def set_actions_and_update_states(self, actions, cur_timestep): | |
# | |
time_cons = self.time_constant(torch.zeros((1,), dtype=torch.long).cuda()) ### time constant of the system ## | |
self.active_robot.set_actions_and_update_states(actions, cur_timestep, time_cons) ### | |
pass | |
def forward_stepping_test(self, ): | |
# delta_glb_rot; delta_glb_trans # | |
timestep_to_visual_pts = {} | |
for i_step in range(50): | |
actions = {} | |
actions['delta_glb_rot'] = torch.eye(3, dtype=torch.float32).cuda() | |
actions['delta_glb_trans'] = torch.zeros((3,), dtype=torch.float32).cuda() | |
actions_link_actions = torch.ones((22, ), dtype=torch.float32).cuda() | |
# actions_link_actions = actions_link_actions * 0.2 | |
actions_link_actions = actions_link_actions * -1. # | |
actions['link_actions'] = actions_link_actions | |
self.set_actions_and_update_states(actions=actions, cur_timestep=i_step) | |
cur_visual_pts = robot_agent.get_init_state_visual_pts() | |
cur_visual_pts = cur_visual_pts.detach().cpu().numpy() | |
timestep_to_visual_pts[i_step + 1] = cur_visual_pts | |
return timestep_to_visual_pts | |
def initialize_optimization(self, reference_pts_dict): | |
self.n_timesteps = 50 | |
# self.n_timesteps = 19 # first 19-timesteps optimization # | |
self.nn_tot_optimization_iters = 100 | |
# self.nn_tot_optimization_iters = 57 | |
# TODO: load reference points # | |
self.ts_to_reference_pts = np.load(reference_pts_dict, allow_pickle=True).item() #### | |
self.ts_to_reference_pts = { | |
ts // 2 + 1: torch.from_numpy(self.ts_to_reference_pts[ts]).float().cuda() for ts in self.ts_to_reference_pts | |
} | |
def forward_stepping_optimization(self, ): | |
nn_tot_optimization_iters = self.nn_tot_optimization_iters | |
params_to_train = [] | |
params_to_train += list(self.optimizable_actions.parameters()) | |
self.optimizer = torch.optim.Adam(params_to_train, lr=self.learning_rate) | |
for i_iter in range(nn_tot_optimization_iters): | |
tot_losses = [] | |
ts_to_robot_points = {} | |
for cur_ts in range(self.n_timesteps): | |
# print(f"iter: {i_iter}, cur_ts: {cur_ts}") | |
# actions = {} | |
# actions['delta_glb_rot'] = torch.eye(3, dtype=torch.float32).cuda() | |
# actions['delta_glb_trans'] = torch.zeros((3,), dtype=torch.float32).cuda() | |
actions_link_actions = self.optimizable_actions(torch.zeros((1,), dtype=torch.long).cuda() + cur_ts).squeeze(0) | |
# actions_link_actions = actions_link_actions * 0.2 | |
# actions_link_actions = actions_link_actions * -1. # | |
# actions['link_actions'] = actions_link_actions | |
# self.set_actions_and_update_states(actions=actions, cur_timestep=cur_ts) # update the interaction # | |
with torch.no_grad(): | |
self.active_robot.calculate_inertia() | |
self.active_robot.set_actions_and_update_states(actions_link_actions, cur_ts, 0.2) | |
cur_visual_pts, cur_faces = self.active_robot.get_init_visual_pts() | |
ts_to_robot_points[cur_ts + 1] = cur_visual_pts.clone() | |
cur_reference_pts = self.ts_to_reference_pts[cur_ts + 1] | |
diff = torch.sum((cur_visual_pts - cur_reference_pts) ** 2, dim=-1) | |
diff = diff.mean() | |
# diff. | |
self.optimizer.zero_grad() | |
diff.backward(retain_graph=True) | |
# diff.backward(retain_graph=False) | |
self.optimizer.step() | |
tot_losses.append(diff.item()) | |
loss = sum(tot_losses) / float(len(tot_losses)) | |
print(f"Iter: {i_iter}, average loss: {loss}") | |
# print(f"Iter: {i_iter}, average loss: {loss.item()}, start optimizing") | |
# self.optimizer.zero_grad() | |
# loss.backward() | |
# self.optimizer.step() | |
self.ts_to_robot_points = { | |
ts: ts_to_robot_points[ts].detach().cpu().numpy() for ts in ts_to_robot_points | |
} | |
self.ts_to_ref_points = { | |
ts: self.ts_to_reference_pts[ts].detach().cpu().numpy() for ts in ts_to_robot_points | |
} | |
return self.ts_to_robot_points, self.ts_to_ref_points | |
def rotation_matrix_from_axis_angle(axis, angle): # rotation_matrix_from_axis_angle -> | |
# sin_ = np.sin(angle) # ti.math.sin(angle) | |
# cos_ = np.cos(angle) # ti.math.cos(angle) | |
sin_ = torch.sin(angle) # ti.math.sin(angle) | |
cos_ = torch.cos(angle) # ti.math.cos(angle) | |
u_x, u_y, u_z = axis[0], axis[1], axis[2] | |
u_xx = u_x * u_x | |
u_yy = u_y * u_y | |
u_zz = u_z * u_z | |
u_xy = u_x * u_y | |
u_xz = u_x * u_z | |
u_yz = u_y * u_z ## | |
row_a = torch.stack( | |
[cos_ + u_xx * (1 - cos_), u_xy * (1. - cos_) + u_z * sin_, u_xz * (1. - cos_) - u_y * sin_], dim=0 | |
) | |
# print(f"row_a: {row_a.size()}") | |
row_b = torch.stack( | |
[u_xy * (1. - cos_) - u_z * sin_, cos_ + u_yy * (1. - cos_), u_yz * (1. - cos_) + u_x * sin_], dim=0 | |
) | |
# print(f"row_b: {row_b.size()}") | |
row_c = torch.stack( | |
[u_xz * (1. - cos_) + u_y * sin_, u_yz * (1. - cos_) - u_x * sin_, cos_ + u_zz * (1. - cos_)], dim=0 | |
) | |
# print(f"row_c: {row_c.size()}") | |
### rot_mtx for the rot_mtx ### | |
rot_mtx = torch.stack( | |
[row_a, row_b, row_c], dim=-1 ### rot_matrix of he matrix ## | |
) | |
return rot_mtx | |
#### Big TODO: the external contact forces from the manipulated object to the robot #### | |
if __name__=='__main__': | |
urdf_fn = "/home/xueyi/diffsim/NeuS/rsc/mano/mano_mean_nocoll_simplified.urdf" | |
robot_agent = RobotAgent(urdf_fn) | |
ref_dict_npy = "reference_verts.npy" | |
robot_agent.initialize_optimization(ref_dict_npy) | |
ts_to_robot_points, ts_to_ref_points = robot_agent.forward_stepping_optimization() | |
np.save(f"ts_to_robot_points.npy", ts_to_robot_points) | |
np.save(f"ts_to_ref_points.npy", ts_to_ref_points) | |
exit(0) | |
urdf_fn = "/home/xueyi/diffsim/NeuS/rsc/mano/mano_mean_nocoll_simplified.urdf" | |
cur_robot = parse_data_from_urdf(urdf_fn) | |
# self.init_vertices, self.init_faces | |
init_vertices, init_faces = cur_robot.init_vertices, cur_robot.init_faces | |
init_vertices = init_vertices.detach().cpu().numpy() | |
init_faces = init_faces.detach().cpu().numpy() | |
## initial states ehre ##3 | |
# mesh_obj = trimesh.Trimesh(vertices=init_vertices, faces=init_faces) | |
# mesh_obj.export(f"hand_urdf.ply") | |
##### Test the set initial state function ##### | |
init_joint_states = torch.zeros((60, ), dtype=torch.float32).cuda() | |
cur_robot.set_initial_state(init_joint_states) | |
##### Test the set initial state function ##### | |
cur_zeros_actions = torch.zeros((60, ), dtype=torch.float32).cuda() | |
cur_ones_actions = torch.ones((60, ), dtype=torch.float32).cuda() # * 100 | |
ts_to_mesh_verts = {} | |
for i_ts in range(50): | |
cur_robot.calculate_inertia() | |
cur_robot.set_actions_and_update_states(cur_ones_actions, i_ts, 0.2) ### | |
cur_verts, cur_faces = cur_robot.get_init_visual_pts() | |
cur_mesh = trimesh.Trimesh(vertices=cur_verts.detach().cpu().numpy(), faces=cur_faces.detach().cpu().numpy()) | |
ts_to_mesh_verts[i_ts + i_ts] = cur_verts.detach().cpu().numpy() | |
# cur_mesh.export(f"stated_mano_mesh.ply") | |
# cur_mesh.export(f"zero_actioned_mano_mesh.ply") | |
cur_mesh.export(f"ones_actioned_mano_mesh_ts_{i_ts}.ply") | |
np.save(f"reference_verts.npy", ts_to_mesh_verts) | |
exit(0) | |
xml_fn = "/home/xueyi/diffsim/DiffHand/assets/hand_sphere.xml" | |
robot_agent = RobotAgent(xml_fn=xml_fn, args=None) | |
init_visual_pts = robot_agent.init_visual_pts.detach().cpu().numpy() | |
exit(0) | |