Spaces:
Runtime error
Runtime error
# This code is based on https://github.com/openai/guided-diffusion | |
""" | |
Various utilities for neural networks. | |
""" | |
import math | |
import torch as th | |
import torch.nn as nn | |
# PyTorch 1.7 has SiLU, but we support PyTorch 1.5. | |
class SiLU(nn.Module): | |
def forward(self, x): | |
return x * th.sigmoid(x) | |
class GroupNorm32(nn.GroupNorm): | |
def forward(self, x): | |
return super().forward(x.float()).type(x.dtype) | |
def conv_nd(dims, *args, **kwargs): | |
""" | |
Create a 1D, 2D, or 3D convolution module. | |
""" | |
if dims == 1: | |
return nn.Conv1d(*args, **kwargs) | |
elif dims == 2: | |
return nn.Conv2d(*args, **kwargs) | |
elif dims == 3: | |
return nn.Conv3d(*args, **kwargs) | |
raise ValueError(f"unsupported dimensions: {dims}") | |
def linear(*args, **kwargs): | |
""" | |
Create a linear module. | |
""" | |
return nn.Linear(*args, **kwargs) | |
def avg_pool_nd(dims, *args, **kwargs): | |
""" | |
Create a 1D, 2D, or 3D average pooling module. | |
""" | |
if dims == 1: | |
return nn.AvgPool1d(*args, **kwargs) | |
elif dims == 2: | |
return nn.AvgPool2d(*args, **kwargs) | |
elif dims == 3: | |
return nn.AvgPool3d(*args, **kwargs) | |
raise ValueError(f"unsupported dimensions: {dims}") | |
def update_ema(target_params, source_params, rate=0.99): | |
""" | |
Update target parameters to be closer to those of source parameters using | |
an exponential moving average. | |
:param target_params: the target parameter sequence. | |
:param source_params: the source parameter sequence. | |
:param rate: the EMA rate (closer to 1 means slower). | |
""" | |
for targ, src in zip(target_params, source_params): | |
targ.detach().mul_(rate).add_(src, alpha=1 - rate) | |
def zero_module(module): | |
""" | |
Zero out the parameters of a module and return it. | |
""" | |
for p in module.parameters(): | |
p.detach().zero_() | |
return module | |
def scale_module(module, scale): | |
""" | |
Scale the parameters of a module and return it. | |
""" | |
for p in module.parameters(): | |
p.detach().mul_(scale) | |
return module | |
def mean_flat(tensor): | |
""" | |
Take the mean over all non-batch dimensions. | |
""" | |
return tensor.mean(dim=list(range(1, len(tensor.shape)))) | |
def sum_flat(tensor): | |
""" | |
Take the sum over all non-batch dimensions. | |
""" | |
return tensor.sum(dim=list(range(1, len(tensor.shape)))) | |
def normalization(channels): | |
""" | |
Make a standard normalization layer. | |
:param channels: number of input channels. | |
:return: an nn.Module for normalization. | |
""" | |
return GroupNorm32(32, channels) | |
def timestep_embedding(timesteps, dim, max_period=10000): | |
""" | |
Create sinusoidal timestep embeddings. | |
:param timesteps: a 1-D Tensor of N indices, one per batch element. | |
These may be fractional. | |
:param dim: the dimension of the output. | |
:param max_period: controls the minimum frequency of the embeddings. | |
:return: an [N x dim] Tensor of positional embeddings. | |
""" | |
half = dim // 2 | |
freqs = th.exp( | |
-math.log(max_period) * th.arange(start=0, end=half, dtype=th.float32) / half | |
).to(device=timesteps.device) | |
args = timesteps[:, None].float() * freqs[None] | |
embedding = th.cat([th.cos(args), th.sin(args)], dim=-1) | |
if dim % 2: | |
embedding = th.cat([embedding, th.zeros_like(embedding[:, :1])], dim=-1) | |
return embedding | |
def checkpoint(func, inputs, params, flag): | |
""" | |
Evaluate a function without caching intermediate activations, allowing for | |
reduced memory at the expense of extra compute in the backward pass. | |
:param func: the function to evaluate. | |
:param inputs: the argument sequence to pass to `func`. | |
:param params: a sequence of parameters `func` depends on but does not | |
explicitly take as arguments. | |
:param flag: if False, disable gradient checkpointing. | |
""" | |
if flag: | |
args = tuple(inputs) + tuple(params) | |
return CheckpointFunction.apply(func, len(inputs), *args) | |
else: | |
return func(*inputs) | |
class CheckpointFunction(th.autograd.Function): | |
def forward(ctx, run_function, length, *args): | |
ctx.run_function = run_function | |
ctx.input_length = length | |
ctx.save_for_backward(*args) | |
with th.no_grad(): | |
output_tensors = ctx.run_function(*args[:length]) | |
return output_tensors | |
def backward(ctx, *output_grads): | |
args = list(ctx.saved_tensors) | |
# Filter for inputs that require grad. If none, exit early. | |
input_indices = [i for (i, x) in enumerate(args) if x.requires_grad] | |
if not input_indices: | |
return (None, None) + tuple(None for _ in args) | |
with th.enable_grad(): | |
for i in input_indices: | |
if i < ctx.input_length: | |
# Not sure why the OAI code does this little | |
# dance. It might not be necessary. | |
args[i] = args[i].detach().requires_grad_() | |
args[i] = args[i].view_as(args[i]) | |
output_tensors = ctx.run_function(*args[:ctx.input_length]) | |
if isinstance(output_tensors, th.Tensor): | |
output_tensors = [output_tensors] | |
# Filter for outputs that require grad. If none, exit early. | |
out_and_grads = [(o, g) for (o, g) in zip(output_tensors, output_grads) if o.requires_grad] | |
if not out_and_grads: | |
return (None, None) + tuple(None for _ in args) | |
# Compute gradients on the filtered tensors. | |
computed_grads = th.autograd.grad( | |
[o for (o, g) in out_and_grads], | |
[args[i] for i in input_indices], | |
[g for (o, g) in out_and_grads] | |
) | |
# Reassemble the complete gradient tuple. | |
input_grads = [None for _ in args] | |
for (i, g) in zip(input_indices, computed_grads): | |
input_grads[i] = g | |
return (None, None) + tuple(input_grads) | |