Upload 3 files
Browse files- app.py +277 -0
- requirements.txt +8 -0
- style.css +4 -0
app.py
ADDED
@@ -0,0 +1,277 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
import glob
|
4 |
+
import sys
|
5 |
+
import time
|
6 |
+
from pathlib import Path
|
7 |
+
from typing import Tuple
|
8 |
+
|
9 |
+
from huggingface_hub import hf_hub_download
|
10 |
+
from PIL import Image
|
11 |
+
import gradio as gr
|
12 |
+
import torch
|
13 |
+
from fairscale.nn.model_parallel.initialize import initialize_model_parallel
|
14 |
+
|
15 |
+
from llama import LLaMA, ModelArgs, Tokenizer, Transformer, VisionModel
|
16 |
+
|
17 |
+
os.environ['CUDA_LAUNCH_BLOCKING'] = '1'
|
18 |
+
|
19 |
+
PROMPT_DICT = {
|
20 |
+
"prompt_input": (
|
21 |
+
"Below is an instruction that describes a task, paired with an input that provides further context. "
|
22 |
+
"Write a response that appropriately completes the request.\n\n"
|
23 |
+
"### Instruction:\n{instruction}\n\n### Input:\n{input}\n\n### Response:"
|
24 |
+
),
|
25 |
+
"prompt_no_input": (
|
26 |
+
"Below is an instruction that describes a task. "
|
27 |
+
"Write a response that appropriately completes the request.\n\n"
|
28 |
+
"### Instruction:\n{instruction}\n\n### Response:"
|
29 |
+
),
|
30 |
+
}
|
31 |
+
|
32 |
+
|
33 |
+
def setup_model_parallel() -> Tuple[int, int]:
|
34 |
+
os.environ['RANK'] = '0'
|
35 |
+
os.environ['WORLD_SIZE'] = '1'
|
36 |
+
os.environ['MP'] = '1'
|
37 |
+
os.environ['MASTER_ADDR'] = '127.0.0.1'
|
38 |
+
os.environ['MASTER_PORT'] = '2223'
|
39 |
+
local_rank = int(os.environ.get("LOCAL_RANK", -1))
|
40 |
+
world_size = int(os.environ.get("WORLD_SIZE", -1))
|
41 |
+
|
42 |
+
torch.distributed.init_process_group("nccl")
|
43 |
+
initialize_model_parallel(world_size)
|
44 |
+
torch.cuda.set_device(local_rank)
|
45 |
+
|
46 |
+
# seed must be the same in all processes
|
47 |
+
torch.manual_seed(1)
|
48 |
+
return local_rank, world_size
|
49 |
+
|
50 |
+
|
51 |
+
def load(
|
52 |
+
ckpt0_path: str,
|
53 |
+
ckpt1_path: str,
|
54 |
+
param_path: str,
|
55 |
+
tokenizer_path: str,
|
56 |
+
instruct_adapter_path: str,
|
57 |
+
caption_adapter_path: str,
|
58 |
+
local_rank: int,
|
59 |
+
world_size: int,
|
60 |
+
max_seq_len: int,
|
61 |
+
max_batch_size: int,
|
62 |
+
) -> LLaMA:
|
63 |
+
start_time = time.time()
|
64 |
+
print("Loading")
|
65 |
+
instruct_adapter_checkpoint = torch.load(
|
66 |
+
instruct_adapter_path, map_location="cpu")
|
67 |
+
caption_adapter_checkpoint = torch.load(
|
68 |
+
caption_adapter_path, map_location="cpu")
|
69 |
+
with open(param_path, "r") as f:
|
70 |
+
params = json.loads(f.read())
|
71 |
+
|
72 |
+
model_args: ModelArgs = ModelArgs(
|
73 |
+
max_seq_len=max_seq_len, max_batch_size=max_batch_size, **params
|
74 |
+
)
|
75 |
+
model_args.adapter_layer = int(
|
76 |
+
instruct_adapter_checkpoint['adapter_query.weight'].shape[0] / model_args.adapter_len)
|
77 |
+
model_args.cap_adapter_layer = int(
|
78 |
+
caption_adapter_checkpoint['cap_adapter_query.weight'].shape[0] / model_args.cap_adapter_len)
|
79 |
+
|
80 |
+
tokenizer = Tokenizer(model_path=tokenizer_path)
|
81 |
+
model_args.vocab_size = tokenizer.n_words
|
82 |
+
torch.set_default_tensor_type(torch.cuda.HalfTensor)
|
83 |
+
model = Transformer(model_args)
|
84 |
+
|
85 |
+
# To reduce memory usuage
|
86 |
+
ckpt0 = torch.load(ckpt0_path, map_location='cuda')
|
87 |
+
model.load_state_dict(ckpt0, strict=False)
|
88 |
+
del ckpt0
|
89 |
+
torch.cuda.empty_cache()
|
90 |
+
|
91 |
+
ckpt1 = torch.load(ckpt1_path, map_location='cuda')
|
92 |
+
model.load_state_dict(ckpt1, strict=False)
|
93 |
+
del ckpt1
|
94 |
+
torch.cuda.empty_cache()
|
95 |
+
|
96 |
+
vision_model = VisionModel(model_args)
|
97 |
+
|
98 |
+
torch.set_default_tensor_type(torch.FloatTensor)
|
99 |
+
model.load_state_dict(instruct_adapter_checkpoint, strict=False)
|
100 |
+
model.load_state_dict(caption_adapter_checkpoint, strict=False)
|
101 |
+
vision_model.load_state_dict(caption_adapter_checkpoint, strict=False)
|
102 |
+
|
103 |
+
generator = LLaMA(model, tokenizer, vision_model)
|
104 |
+
print(f"Loaded in {time.time() - start_time:.2f} seconds")
|
105 |
+
return generator
|
106 |
+
|
107 |
+
|
108 |
+
def instruct_generate(
|
109 |
+
instruct: str,
|
110 |
+
input: str = 'none',
|
111 |
+
max_gen_len=512,
|
112 |
+
temperature: float = 0.1,
|
113 |
+
top_p: float = 0.75,
|
114 |
+
):
|
115 |
+
if input == 'none':
|
116 |
+
prompt = PROMPT_DICT['prompt_no_input'].format_map(
|
117 |
+
{'instruction': instruct, 'input': ''})
|
118 |
+
else:
|
119 |
+
prompt = PROMPT_DICT['prompt_input'].format_map(
|
120 |
+
{'instruction': instruct, 'input': input})
|
121 |
+
|
122 |
+
results = generator.generate(
|
123 |
+
[prompt], max_gen_len=max_gen_len, temperature=temperature, top_p=top_p
|
124 |
+
)
|
125 |
+
result = results[0].strip()
|
126 |
+
print(result)
|
127 |
+
return result
|
128 |
+
|
129 |
+
|
130 |
+
def caption_generate(
|
131 |
+
img: str,
|
132 |
+
max_gen_len=512,
|
133 |
+
temperature: float = 0.1,
|
134 |
+
top_p: float = 0.75,
|
135 |
+
):
|
136 |
+
imgs = [Image.open(img).convert('RGB')]
|
137 |
+
prompts = ["Generate caption of this image :",] * len(imgs)
|
138 |
+
|
139 |
+
results = generator.generate(
|
140 |
+
prompts, imgs=imgs, max_gen_len=max_gen_len, temperature=temperature, top_p=top_p
|
141 |
+
)
|
142 |
+
result = results[0].strip()
|
143 |
+
print(result)
|
144 |
+
return result
|
145 |
+
|
146 |
+
|
147 |
+
def download_llama_adapter(instruct_adapter_path, caption_adapter_path):
|
148 |
+
if not os.path.exists(instruct_adapter_path):
|
149 |
+
os.system(
|
150 |
+
f"wget -q -O {instruct_adapter_path} https://github.com/ZrrSkywalker/LLaMA-Adapter/releases/download/v.1.0.0/llama_adapter_len10_layer30_release.pth")
|
151 |
+
|
152 |
+
if not os.path.exists(caption_adapter_path):
|
153 |
+
os.system(
|
154 |
+
f"wget -q -O {caption_adapter_path} https://github.com/ZrrSkywalker/LLaMA-Adapter/releases/download/v.1.0.0/llama_adapter_len10_layer30_caption_vit_l.pth")
|
155 |
+
|
156 |
+
|
157 |
+
# ckpt_path = "/data1/llma/7B/consolidated.00.pth"
|
158 |
+
# param_path = "/data1/llma/7B/params.json"
|
159 |
+
# tokenizer_path = "/data1/llma/tokenizer.model"
|
160 |
+
ckpt0_path = hf_hub_download(
|
161 |
+
repo_id="csuhan/llama_storage", filename="consolidated.00_part0.pth")
|
162 |
+
ckpt1_path = hf_hub_download(
|
163 |
+
repo_id="csuhan/llama_storage", filename="consolidated.00_part1.pth")
|
164 |
+
param_path = hf_hub_download(
|
165 |
+
repo_id="nyanko7/LLaMA-7B", filename="params.json")
|
166 |
+
tokenizer_path = hf_hub_download(
|
167 |
+
repo_id="nyanko7/LLaMA-7B", filename="tokenizer.model")
|
168 |
+
instruct_adapter_path = "llama_adapter_len10_layer30_release.pth"
|
169 |
+
caption_adapter_path = "llama_adapter_len10_layer30_caption_vit_l.pth"
|
170 |
+
max_seq_len = 512
|
171 |
+
max_batch_size = 1
|
172 |
+
|
173 |
+
# download models
|
174 |
+
# download_llama_adapter(instruct_adapter_path, caption_adapter_path)
|
175 |
+
|
176 |
+
local_rank, world_size = setup_model_parallel()
|
177 |
+
if local_rank > 0:
|
178 |
+
sys.stdout = open(os.devnull, "w")
|
179 |
+
|
180 |
+
generator = load(
|
181 |
+
ckpt0_path, ckpt1_path, param_path, tokenizer_path, instruct_adapter_path, caption_adapter_path, local_rank, world_size, max_seq_len, max_batch_size
|
182 |
+
)
|
183 |
+
|
184 |
+
|
185 |
+
def create_instruct_demo():
|
186 |
+
with gr.Blocks() as instruct_demo:
|
187 |
+
with gr.Row():
|
188 |
+
with gr.Column():
|
189 |
+
instruction = gr.Textbox(lines=2, label="Instruction")
|
190 |
+
input = gr.Textbox(
|
191 |
+
lines=2, label="Context input", placeholder='none')
|
192 |
+
max_len = gr.Slider(minimum=1, maximum=512,
|
193 |
+
value=128, label="Max length")
|
194 |
+
with gr.Accordion(label='Advanced options', open=False):
|
195 |
+
temp = gr.Slider(minimum=0, maximum=1,
|
196 |
+
value=0.1, label="Temperature")
|
197 |
+
top_p = gr.Slider(minimum=0, maximum=1,
|
198 |
+
value=0.75, label="Top p")
|
199 |
+
|
200 |
+
run_botton = gr.Button("Run")
|
201 |
+
|
202 |
+
with gr.Column():
|
203 |
+
outputs = gr.Textbox(lines=10, label="Output")
|
204 |
+
|
205 |
+
inputs = [instruction, input, max_len, temp, top_p]
|
206 |
+
|
207 |
+
examples = [
|
208 |
+
"Tell me about alpacas.",
|
209 |
+
"Write a Python program that prints the first 10 Fibonacci numbers.",
|
210 |
+
"Write a conversation between the sun and pluto.",
|
211 |
+
"Write a theory to explain why cat never existed",
|
212 |
+
]
|
213 |
+
examples = [
|
214 |
+
[x, "none", 128, 0.1, 0.75]
|
215 |
+
for x in examples]
|
216 |
+
|
217 |
+
gr.Examples(
|
218 |
+
examples=examples,
|
219 |
+
inputs=inputs,
|
220 |
+
outputs=outputs,
|
221 |
+
fn=instruct_generate,
|
222 |
+
cache_examples=os.getenv('SYSTEM') == 'spaces'
|
223 |
+
)
|
224 |
+
run_botton.click(fn=instruct_generate, inputs=inputs, outputs=outputs)
|
225 |
+
return instruct_demo
|
226 |
+
|
227 |
+
|
228 |
+
def create_caption_demo():
|
229 |
+
with gr.Blocks() as instruct_demo:
|
230 |
+
with gr.Row():
|
231 |
+
with gr.Column():
|
232 |
+
img = gr.Image(label='Input', type='filepath')
|
233 |
+
max_len = gr.Slider(minimum=1, maximum=512,
|
234 |
+
value=64, label="Max length")
|
235 |
+
with gr.Accordion(label='Advanced options', open=False):
|
236 |
+
temp = gr.Slider(minimum=0, maximum=1,
|
237 |
+
value=0.1, label="Temperature")
|
238 |
+
top_p = gr.Slider(minimum=0, maximum=1,
|
239 |
+
value=0.75, label="Top p")
|
240 |
+
|
241 |
+
run_botton = gr.Button("Run")
|
242 |
+
|
243 |
+
with gr.Column():
|
244 |
+
outputs = gr.Textbox(lines=10, label="Output")
|
245 |
+
|
246 |
+
inputs = [img, max_len, temp, top_p]
|
247 |
+
|
248 |
+
examples = glob.glob("caption_demo/*.jpg")
|
249 |
+
examples = [
|
250 |
+
[x, 64, 0.1, 0.75]
|
251 |
+
for x in examples]
|
252 |
+
|
253 |
+
gr.Examples(
|
254 |
+
examples=examples,
|
255 |
+
inputs=inputs,
|
256 |
+
outputs=outputs,
|
257 |
+
fn=caption_generate,
|
258 |
+
cache_examples=os.getenv('SYSTEM') == 'spaces'
|
259 |
+
)
|
260 |
+
run_botton.click(fn=caption_generate, inputs=inputs, outputs=outputs)
|
261 |
+
return instruct_demo
|
262 |
+
|
263 |
+
|
264 |
+
description = """
|
265 |
+
# LLaMA-Adapter🚀
|
266 |
+
The official demo for **LLaMA-Adapter: Efficient Fine-tuning of Language Models with Zero-init Attention**.
|
267 |
+
Please refer to our [arXiv paper](https://arxiv.org/abs/2303.16199) and [github](https://github.com/ZrrSkywalker/LLaMA-Adapter) for more details.
|
268 |
+
"""
|
269 |
+
|
270 |
+
with gr.Blocks(css='style.css') as demo:
|
271 |
+
gr.Markdown(description)
|
272 |
+
with gr.TabItem("Instruction-Following"):
|
273 |
+
create_instruct_demo()
|
274 |
+
with gr.TabItem("Image Captioning"):
|
275 |
+
create_caption_demo()
|
276 |
+
|
277 |
+
demo.queue(api_open=True, concurrency_count=1).launch()
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
--extra-index-url https://download.pytorch.org/whl/cu113
|
2 |
+
torch==1.12.0+cu113
|
3 |
+
fairscale
|
4 |
+
sentencepiece
|
5 |
+
Pillow
|
6 |
+
huggingface_hub
|
7 |
+
git+https://github.com/csuhan/timm_0_3_2.git
|
8 |
+
git+https://github.com/openai/CLIP.git
|
style.css
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
h1,p {
|
2 |
+
text-align: center;
|
3 |
+
}
|
4 |
+
|