TAPA / scripts /prepare_any_text.py
xuxw98's picture
Upload 58 files
7d52396
"""Implementation derived from https://github.com/tloen/alpaca-lora"""
import sys
from pathlib import Path
# support running without installing as a package
wd = Path(__file__).parent.parent.resolve()
sys.path.append(str(wd))
import torch
import requests
import json
from torch.utils.data import random_split
from lit_llama.tokenizer import Tokenizer
from tqdm import tqdm
IGNORE_INDEX = -1
DATA_FILE_NAME = "input.txt"
def prepare(
destination_path: Path = Path("data/any"),
tokenizer_path: Path = Path("checkpoints/lit-llama/tokenizer.model"),
test_split_ratio: float = 0.9, # default 90% train, 10% validation
max_seq_length: int = 256,
seed: int = 42,
data_file_name: str = DATA_FILE_NAME,
) -> None:
"""Prepare any dataset for finetuning (akin to Shakespheare full tuning).
The output is a training and validation dataset saved as `train.pt` and `val.pt`,
which stores the preprocessed and tokenized prompts and labels.
"""
destination_path.mkdir(parents=True, exist_ok=True)
file_path = destination_path / data_file_name
if not file_path.exists():
raise AssertionError(f"{data_file_name} is provided by the user")
# TODO: If we don't have the Meta weights, where do we get the tokenizer from?
tokenizer = Tokenizer(tokenizer_path)
data = []
with open(file_path, "r") as input_file:
for line in input_file.readlines():
data.append(line)
# Partition the dataset into train and test
train_split_size = int(len(data) * test_split_ratio)
test_split_size = len(data) - train_split_size
train_set, test_set = random_split(
data,
lengths=(train_split_size, test_split_size),
generator=torch.Generator().manual_seed(seed),
)
train_set, test_set = list(train_set), list(test_set)
print(f"train has {len(train_set):,} samples")
print(f"val has {len(test_set):,} samples")
print("Processing train split ...")
train_set = [
prepare_line(line, tokenizer, max_seq_length) for line in tqdm(train_set)
]
torch.save(train_set, file_path.parent / "train.pt")
print("Processing test split ...")
test_set = [
prepare_line(line, tokenizer, max_seq_length) for line in tqdm(test_set)
]
torch.save(test_set, file_path.parent / "test.pt")
def prepare_line(line: str, tokenizer: Tokenizer, max_length: int):
"""Processes a single sample.
This function processes the line to produce the tokenized version of it.
"""
encoded_full_prompt = tokenize(tokenizer, line, max_length=max_length, eos=False)
return {
"input_ids": encoded_full_prompt,
"labels": encoded_full_prompt,
}
def tokenize(
tokenizer: Tokenizer, string: str, max_length: int, eos=True
) -> torch.Tensor:
return tokenizer.encode(string, bos=True, eos=eos, max_length=max_length)
if __name__ == "__main__":
from jsonargparse import CLI
CLI(prepare)