TAPA / scripts /convert_hf_checkpoint.py
xuxw98's picture
Upload 58 files
7d52396
raw
history blame
6.61 kB
import collections
import contextlib
import gc
import json
import shutil
import sys
from pathlib import Path
import torch
# support running without installing as a package
wd = Path(__file__).parent.parent.resolve()
sys.path.append(str(wd))
from lit_llama.model import LLaMA, LLaMAConfig
from lit_llama.utils import EmptyInitOnDevice, lazy_load, incremental_save
@torch.no_grad()
def convert_hf_checkpoint(
*,
output_dir: Path = Path("checkpoints/lit-llama/7B"),
checkpoint_dir: Path = Path("checkpoints/hf-llama/7B"),
model_size: str = "7B",
dtype: str = "float32",
verify: bool = False,
) -> None:
"""
Perform the reverse operation of: https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/convert_llama_weights_to_hf.py
"""
output_dir.mkdir(parents=True, exist_ok=True)
# the tokenizer is the same for all model sizes, so we store it in the parent dir
shutil.copy(checkpoint_dir / "tokenizer.model", output_dir.parent)
dt = getattr(torch, dtype, None)
if not isinstance(dt, torch.dtype):
raise ValueError(f"{dtype} is not a valid dtype.")
dtype = dt
print("Initializing lit-llama")
config = LLaMAConfig.from_name(model_size)
with EmptyInitOnDevice(device="meta", dtype=dtype):
model = LLaMA(config)
qkv_size = model.transformer.h[0].attn.c_attn.weight.shape[0] // 3
# initialize a new empty state dict to hold our new weights
sd_meta = model.state_dict()
sd = {}
# Load the json file containing weight mapping
pytorch_bin_map_json_path = checkpoint_dir / "pytorch_model.bin.index.json"
with open(pytorch_bin_map_json_path) as json_map:
bin_index = json.load(json_map)
bin_files = set(checkpoint_dir / bin for bin in bin_index["weight_map"].values())
if not bin_files:
raise ValueError(f"Expected {str(checkpoint_dir)!r} to contain .bin files")
def permute(w):
dim = config.n_embd
w = w._load_tensor().to(dtype)
return (
w.view(config.n_head, 2, dim // config.n_head // 2, dim)
.transpose(1, 2)
.reshape(dim, dim)
)
weight_map = {
"self_attn.o_proj.weight": "attn.c_proj.weight",
"self_attn.q_proj.weight": "attn.c_attn.weight",
"self_attn.k_proj.weight": "attn.c_attn.weight",
"self_attn.v_proj.weight": "attn.c_attn.weight",
"mlp.gate_proj.weight": "mlp.c_fc1.weight",
"mlp.up_proj.weight": "mlp.c_fc2.weight",
"mlp.down_proj.weight": "mlp.c_proj.weight",
"input_layernorm.weight": "rms_1.scale",
"post_attention_layernorm.weight": "rms_2.scale",
"model.embed_tokens.weight": "transformer.wte.weight",
"model.norm.weight": "transformer.ln_f.scale",
"lm_head.weight": "lm_head.weight",
}
print(f"Saving to disk at {output_dir}")
unprocessed_weights = collections.defaultdict(dict)
with incremental_save(output_dir / "lit-llama.pth") as saver:
# for checkpoints that split the QKV across several files, we need to keep all the bin files
# open, so we use `ExitStack` to close them all together at the end
with contextlib.ExitStack() as stack:
for bin_file in bin_files:
print("Processing", bin_file)
hf_weights = stack.enter_context(lazy_load(bin_file))
for name, param in hf_weights.items():
skip = False
if "rotary_emb.inv_freq" in name:
continue
if "model.layers" in name:
block_id = int(name.split(".")[2])
from_name = ".".join(name.split(".")[3:])
to_name = weight_map[from_name]
sd_key = f"transformer.h.{block_id}.{to_name}"
if "q_proj" in name:
unprocessed_weights[sd_key]["q_proj"] = param
skip = True
elif "k_proj" in name:
unprocessed_weights[sd_key]["k_proj"] = param
skip = True
elif "v_proj" in name:
unprocessed_weights[sd_key]["v_proj"] = param
skip = True
if skip and len(unprocessed_weights[sd_key]) == 3:
w = torch.empty(
sd_meta[sd_key].shape, dtype=sd_meta[sd_key].dtype
)
w[:qkv_size] = permute(unprocessed_weights[sd_key]["q_proj"])
w[qkv_size:-qkv_size] = permute(
unprocessed_weights[sd_key]["k_proj"]
)
w[-qkv_size:] = (
unprocessed_weights[sd_key]["v_proj"]
._load_tensor()
.to(dtype)
)
sd[sd_key] = w
del unprocessed_weights[sd_key]
skip = False
else:
sd[sd_key] = param._load_tensor().to(dtype)
else:
sd_key = weight_map[name]
sd[sd_key] = param._load_tensor().to(dtype)
if not skip:
sd[sd_key] = saver.store_early(sd[sd_key])
gc.collect()
saver.save(sd)
assert len(unprocessed_weights) == 0, f"unexpected partial weights {list(unprocessed_weights)}"
if verify:
try:
from transformers import LlamaForCausalLM
except ImportError:
raise ImportError("verify=True requires transformers to be installed, please `pip install transformers`")
print("Verifying...")
token_sample = torch.randint(0, config.vocab_size, size=(1, config.block_size), dtype=torch.int64)
out = model(token_sample)
del model
gc.collect()
print("Loading original model for comparison")
model_hf = LlamaForCausalLM.from_pretrained(checkpoint_dir)
out_hf = model_hf(token_sample)["logits"]
print("Comparing outputs")
assert out.device.type == out_hf.device.type
assert out.dtype == out_hf.dtype
assert torch.testing.assert_close(out, out_hf)
if __name__ == "__main__":
from jsonargparse import CLI
CLI(convert_hf_checkpoint)