TAPA / pretrain /redpajama.py
xuxw98's picture
Upload 58 files
7d52396
raw
history blame
9.52 kB
import os
import sys
import math
import glob
import time
from functools import partial
from pathlib import Path
from typing import Tuple, Optional
import lightning as L
from lightning.fabric.strategies import FSDPStrategy
import torch
from torch.utils.data import DataLoader
from torch.distributed.fsdp.wrap import transformer_auto_wrap_policy
import numpy as np
# support running without installing as a package
wd = Path(__file__).parent.parent.resolve()
sys.path.append(str(wd))
from lit_llama.model import Block, LLaMA, LLaMAConfig
from lit_llama.packed_dataset import PackedDataset, CombinedDataset
from lit_llama.utils import save_model_checkpoint
out_dir = "out/training"
save_interval = 1000
eval_interval = 1000
eval_iters = 100
log_interval = 1
# compile = False
# Hyperparameters
learning_rate = 6e-4
batch_size = 125
micro_batch_size = 5
max_iters = 600000 # num_epochs * (epoch_size // micro_batch_size) // devices
weight_decay = 1e-1
beta1 = 0.9
beta2 = 0.95
grad_clip = 1.0
decay_lr = True
warmup_iters = 2000
lr_decay_iters = max_iters
min_lr = 6e-5
# Data proportions from https://arxiv.org/pdf/2302.13971.pdf Table 1
data_config = [
("arxiv", 2.5),
("book", 4.5),
("c4", 15.0),
("cc", 67.0),
("github", 4.5),
("stackexchange", 2.0),
("wikipedia", 4.5),
]
def main(
devices: int = 4,
train_data_dir: Path = "data/lit-redpajama",
val_data_dir: Optional[Path] = None,
) -> None:
auto_wrap_policy = partial(
transformer_auto_wrap_policy, transformer_layer_cls={Block}
)
strategy = FSDPStrategy(
auto_wrap_policy=auto_wrap_policy, activation_checkpointing=Block, limit_all_gathers=True
)
fabric = L.Fabric(
accelerator="cuda", devices=devices, precision="bf16-mixed", strategy=strategy
)
fabric.launch()
fabric.seed_everything(1337)
if fabric.global_rank == 0:
os.makedirs(out_dir, exist_ok=True)
config = LLaMAConfig.from_name("7B")
train_dataloader, val_dataloader = create_dataloaders(
batch_size=micro_batch_size,
block_size=config.block_size,
fabric=fabric,
train_data_dir=train_data_dir,
val_data_dir=val_data_dir,
seed=1338,
)
if val_dataloader is None:
train_dataloader = fabric.setup_dataloaders(train_dataloader)
else:
train_dataloader, val_dataloader = fabric.setup_dataloaders(train_dataloader, val_dataloader)
with fabric.device:
torch.set_default_dtype(torch.bfloat16)
model = LLaMA(config)
model.apply(model._init_weights)
torch.set_default_dtype(torch.float32)
# if compile:
# model = torch.compile(model)
optimizer = torch.optim.AdamW(
model.parameters(),
lr=learning_rate,
weight_decay=weight_decay,
betas=(beta1, beta2),
foreach=False,
)
model, optimizer = fabric.setup(model, optimizer)
process_batch_size = batch_size // devices
gradient_accumulation_iters = process_batch_size // micro_batch_size
train(fabric, model, optimizer, train_dataloader, val_dataloader, gradient_accumulation_iters, devices)
def train(
fabric: L.Fabric,
model: torch.nn.Module,
optimizer: torch.optim.Optimizer,
train_dataloader: DataLoader,
val_dataloader: Optional[DataLoader],
grad_accum_steps: int,
devices: int,
) -> None:
"""The training loop.
Loosely based on the nanoGPT implementation: https://github.com/karpathy/nanoGPT.
"""
step_count = 0
step_time = 0.0
tokens = 0
tokens_sec = 0.0
prev_t1 = time.time()
for iter_num, train_data in enumerate(train_dataloader):
t0 = time.time()
# determine and set the learning rate for this iteration
lr = get_lr(iter_num) if decay_lr else learning_rate
for param_group in optimizer.param_groups:
param_group["lr"] = lr
input_ids = train_data[:, 0 : model.config.block_size].contiguous()
targets = train_data[:, 1 : model.config.block_size + 1].contiguous()
is_accumulating = (iter_num + 1) % grad_accum_steps != 0
with fabric.no_backward_sync(model, enabled=is_accumulating):
logits = model(input_ids)
loss = torch.nn.functional.cross_entropy(
logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1
)
fabric.backward(loss / grad_accum_steps)
t1 = time.time()
if not is_accumulating:
fabric.clip_gradients(model, optimizer, max_norm=grad_clip)
optimizer.step()
optimizer.zero_grad()
step_count += 1
t1 = time.time()
if val_dataloader is not None and step_count % eval_interval == 0:
val_loss = validate(fabric, model, val_dataloader)
fabric.print(f"step {iter_num}: val loss {val_loss:.4f}")
fabric.barrier()
fabric.log_dict(
{"iter": iter_num, "val_loss": val_loss, "step": step_count, "lr": lr}
)
if step_count % save_interval == 0:
fabric.print(f"Saving checkpoint to {out_dir}")
save_model_checkpoint(
fabric, model, os.path.join(out_dir, f"iter-{iter_num:06d}-ckpt.pth")
)
dt = t1 - t0
tokens += micro_batch_size * model.config.block_size
step_time += t1 - prev_t1
prev_t1 = t1
if iter_num % log_interval == 0:
tokens_sec_str = f"{tokens / step_time:.0f}" if not is_accumulating else "-"
fabric.log_dict(
{"iter": iter_num, "train_loss": loss, "step": step_count, "lr": lr}
)
fabric.print(
f"iter {iter_num}: loss {loss.item():.4f}, time: {dt*1000:.2f}ms, speed: {tokens_sec_str} toks/s/device"
)
if not is_accumulating:
tokens = 0
step_time = 0.0
if iter_num > max_iters:
break
@torch.no_grad()
def validate(
fabric: L.Fabric, model: torch.nn.Module, val_dataloader: DataLoader
) -> torch.Tensor:
fabric.print("Validating ...")
model.eval()
losses = torch.zeros(eval_iters)
for k, val_data in enumerate(val_dataloader):
input_ids = val_data[:, 0 : model.config.block_size].contiguous()
targets = val_data[:, 1 : model.config.block_size + 1].contiguous()
logits = model(input_ids)
loss = torch.nn.functional.cross_entropy(
logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1
)
losses[k] = loss.item()
out = losses.mean()
model.train()
return out
def create_dataloader(
batch_size: int,
block_size: int,
data_dir: str,
fabric,
shuffle: bool = True,
seed: int = 12345,
) -> DataLoader:
datasets = []
for prefix, _ in data_config:
filenames = glob.glob(os.path.join(data_dir, prefix + "*"))
dataset = PackedDataset(
filenames, n_chunks=4, block_size=block_size, shuffle=shuffle, seed=seed,
num_processes=fabric.world_size, process_rank=fabric.global_rank,
)
datasets.append(dataset)
if not datasets:
raise RuntimeError(
f"No data found at {data_dir}. Make sure you ran prepare_redpajama.py to create the dataset."
)
weights = [weight for _, weight in data_config]
sum_weights = sum(weights)
weights = [el / sum_weights for el in weights]
combined_dataset = CombinedDataset(datasets=datasets, seed=seed, weights=weights)
return DataLoader(combined_dataset, batch_size=batch_size, shuffle=False, pin_memory=True)
def create_dataloaders(
batch_size: int,
block_size: int,
fabric,
train_data_dir: str = "data/lit-redpajama",
val_data_dir: Optional[str] = None,
seed: int = 12345,
) -> Tuple[DataLoader, DataLoader]:
# Increase by one because we need the next word as well
effective_block_size = block_size + 1
train_dataloader = create_dataloader(
batch_size=batch_size,
block_size=effective_block_size,
fabric=fabric,
data_dir=train_data_dir,
shuffle=True,
seed=seed,
)
val_dataloader = (
create_dataloader(
batch_size=batch_size,
block_size=effective_block_size,
fabric=fabric,
data_dir=val_data_dir,
shuffle=False,
seed=seed,
)
if val_data_dir
else None
)
return train_dataloader, val_dataloader
# learning rate decay scheduler (cosine with warmup)
def get_lr(it):
# 1) linear warmup for warmup_iters steps
if it < warmup_iters:
return learning_rate * it / warmup_iters
# 2) if it > lr_decay_iters, return min learning rate
if it > lr_decay_iters:
return min_lr
# 3) in between, use cosine decay down to min learning rate
decay_ratio = (it - warmup_iters) / (lr_decay_iters - warmup_iters)
assert 0 <= decay_ratio <= 1
coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio)) # coeff ranges 0..1
return min_lr + coeff * (learning_rate - min_lr)
if __name__ == "__main__":
# Uncomment this line if you see an error: "Expected is_sm80 to be true, but got false"
# torch.backends.cuda.enable_flash_sdp(False)
torch.set_float32_matmul_precision("high")
from jsonargparse.cli import CLI
CLI(main)