TAPA / tests /test_utils.py
xuxw98's picture
Upload 58 files
7d52396
raw
history blame
2.16 kB
import tempfile
import pathlib
import torch
class ATensor(torch.Tensor):
pass
def test_lazy_load_basic(lit_llama):
import lit_llama.utils
with tempfile.TemporaryDirectory() as tmpdirname:
m = torch.nn.Linear(5, 3)
path = pathlib.Path(tmpdirname)
fn = str(path / "test.pt")
torch.save(m.state_dict(), fn)
with lit_llama.utils.lazy_load(fn) as sd_lazy:
assert "NotYetLoadedTensor" in str(next(iter(sd_lazy.values())))
m2 = torch.nn.Linear(5, 3)
m2.load_state_dict(sd_lazy)
x = torch.randn(2, 5)
actual = m2(x)
expected = m(x)
torch.testing.assert_close(actual, expected)
def test_lazy_load_subclass(lit_llama):
import lit_llama.utils
with tempfile.TemporaryDirectory() as tmpdirname:
path = pathlib.Path(tmpdirname)
fn = str(path / "test.pt")
t = torch.randn(2, 3)[:, 1:]
sd = {
1: t,
2: torch.nn.Parameter(t),
3: torch.Tensor._make_subclass(ATensor, t),
}
torch.save(sd, fn)
with lit_llama.utils.lazy_load(fn) as sd_lazy:
for k in sd.keys():
actual = sd_lazy[k]
expected = sd[k]
torch.testing.assert_close(actual._load_tensor(), expected)
def test_incremental_write(tmp_path, lit_llama):
import lit_llama.utils
sd = {str(k): torch.randn(5, 10) for k in range(3)}
sd_expected = {k: v.clone() for k, v in sd.items()}
fn = str(tmp_path / "test.pt")
with lit_llama.utils.incremental_save(fn) as f:
sd["0"] = f.store_early(sd["0"])
sd["2"] = f.store_early(sd["2"])
f.save(sd)
sd_actual = torch.load(fn)
assert sd_actual.keys() == sd_expected.keys()
for k, v_expected in sd_expected.items():
v_actual = sd_actual[k]
torch.testing.assert_close(v_expected, v_actual)
def test_find_multiple(lit_llama):
from lit_llama.utils import find_multiple
assert find_multiple(17, 5) == 20
assert find_multiple(30, 7) == 35
assert find_multiple(10, 2) == 10
assert find_multiple(5, 10) == 10