TAPA / tests /test_prepare_redpajama.py
xuxw98's picture
Upload 58 files
7d52396
raw
history blame
4.52 kB
import json
import os
import subprocess
import sys
from pathlib import Path
from unittest import mock
from unittest.mock import Mock, call, ANY
wd = (Path(__file__).parent.parent / "scripts").absolute()
import requests
def train_tokenizer(destination_path):
destination_path.mkdir(parents=True, exist_ok=True)
# download the tiny shakespeare dataset
input_file_path = destination_path / "input.txt"
if not input_file_path.exists():
data_url = "https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt"
with open(input_file_path, "w") as f:
f.write(requests.get(data_url).text)
from lit_llama import Tokenizer
Tokenizer.train(input=input_file_path, destination=destination_path, vocab_size=100)
return destination_path / "tokenizer.model"
def test_prepare_sample(tmp_path):
sys.path.append(str(wd))
tokenizer_path = train_tokenizer(tmp_path)
sample_path = tmp_path / "sample"
source_path = sample_path / "source"
dest_path = sample_path / "dest"
source_path.mkdir(parents=True, exist_ok=True)
sample = {
"meta": {"some": "info"},
"text": "some text"
}
jsonl_sample = "\n".join([json.dumps(el) for el in [sample] * 2])
import prepare_redpajama
for filename in prepare_redpajama.filenames_sample:
with open(source_path / filename, "w") as f:
f.write(jsonl_sample)
prepare_redpajama.prepare(source_path=source_path, tokenizer_path=tokenizer_path, destination_path=dest_path, sample=True)
bin_files = [el.replace(".jsonl", "_0000000000.bin") for el in prepare_redpajama.filenames_sample]
assert set(os.listdir(dest_path)) == set(bin_files)
from lit_llama import Tokenizer
from lit_llama.packed_dataset import PackedDataset
tokenizer = Tokenizer(tokenizer_path)
# artificially set block_size to fit the text
block_size = len(tokenizer.encode("some text"))
for filename in bin_files:
filenames = [os.path.join(dest_path, filename)]
dataset = PackedDataset(filenames=filenames, n_chunks=1, block_size=block_size, shuffle=False)
dataset_iter = iter(dataset)
assert tokenizer.decode(next(dataset_iter)) == "some text"
assert tokenizer.decode(next(dataset_iter)) == "some text"
def test_prepare_full(tmp_path):
sys.path.append(str(wd))
tokenizer_path = train_tokenizer(tmp_path)
full_path = tmp_path / "full"
source_path = full_path / "source"
dest_path = full_path / "dest"
source_path.mkdir(parents=True, exist_ok=True)
sample = {
"meta": {"some": "info"},
"text": "some text"
}
jsonl_sample = "\n".join([json.dumps(el) for el in [sample] * 2])
import prepare_redpajama
arxiv_file = source_path / "arxiv" / "arxiv_0.jsonl"
arxiv_file.parent.mkdir(parents=True, exist_ok=True)
with open(arxiv_file, "w") as f:
f.write(jsonl_sample)
import zstandard as zstd
cc_file = source_path / "common_crawl" / "cc_0.jsonl"
cc_file.parent.mkdir(parents=True, exist_ok=True)
with zstd.open(cc_file, "wt", encoding="utf-8") as f:
f.write(jsonl_sample)
filename_sets = {
"arxiv": "arxiv/arxiv*",
"common_crawl": "common_crawl/*",
}
with mock.patch("prepare_redpajama.filename_sets", filename_sets):
prepare_redpajama.prepare(source_path=source_path, tokenizer_path=tokenizer_path, destination_path=dest_path, sample=False)
all_names = prepare_redpajama.filename_sets.keys()
bin_files = [el + "_0000000000.bin" for el in all_names]
assert set(os.listdir(dest_path)) == set(bin_files)
from lit_llama import Tokenizer
from lit_llama.packed_dataset import PackedDataset
tokenizer = Tokenizer(tokenizer_path)
# artificially set block_size to fit the text
block_size = len(tokenizer.encode("some text"))
filenames = [os.path.join(dest_path, el) for el in bin_files]
for filename in filenames:
dataset = PackedDataset(filenames=[filename], n_chunks=1, block_size=block_size, shuffle=False)
dataset_iter = iter(dataset)
assert tokenizer.decode(next(dataset_iter)) == "some text"
assert tokenizer.decode(next(dataset_iter)) == "some text"
def test_cli():
cli_path = wd / "prepare_redpajama.py"
output = subprocess.check_output([sys.executable, cli_path, "-h"])
output = str(output.decode())
assert 'Prepare the "Red Pajama"' in output