TAPA / tests /test_adapter.py
xuxw98's picture
Upload 58 files
7d52396
raw
history blame
2.18 kB
from dataclasses import asdict
import pytest
import sys
import torch
@pytest.mark.skipif(sys.platform == "win32", reason="EmptyInitOnDevice on CPU not working for Windows.")
@pytest.mark.parametrize("model_size", ["7B", "13B", "30B", "65B"])
def test_config_identical(model_size, lit_llama):
import lit_llama.adapter as llama_adapter
import lit_llama.model as llama
from lit_llama.utils import EmptyInitOnDevice
llama_config = asdict(llama.LLaMAConfig.from_name(model_size))
adapter_config = asdict(llama_adapter.LLaMAConfig.from_name(model_size))
del adapter_config["adapter_prompt_length"]
del adapter_config["adapter_start_layer"]
assert adapter_config == llama_config
with EmptyInitOnDevice():
llama_model = llama.LLaMA.from_name(model_size)
adapter_model = llama_adapter.LLaMA.from_name(model_size)
assert llama_model.lm_head.weight.shape == adapter_model.lm_head.weight.shape
def test_adapter_load_gating_factor(lit_llama):
"""Tests backward-compatible loading of checkpoints after the `gating_factor` was extended per-head
in PR #297.
"""
import lit_llama.adapter as llama_adapter
from lit_llama.utils import lazy_load
config = llama_adapter.LLaMAConfig(n_head=4, block_size=100, n_embd=16)
attn = llama_adapter.CausalSelfAttention(config=config, block_idx=3)
# Old checkpoint format
state_dict={
"gating_factor": torch.tensor(0.42), # in old checkpoints, this was a scalar
"c_attn.weight": torch.zeros(3 * 16, 16),
"c_proj.weight": torch.zeros(16, 16),
"adapter_wte.weight": torch.zeros(10, 16),
}
attn.load_state_dict(state_dict=state_dict)
assert torch.equal(attn.gating_factor, torch.full((1, 4, 1, 1), 0.42))
# New checkpoint format
state_dict={
"gating_factor": torch.tensor([0.42, 0.42, 0.42, 0.42]).reshape(1, 4, 1, 1),
"c_attn.weight": torch.zeros(3 * 16, 16),
"c_proj.weight": torch.zeros(16, 16),
"adapter_wte.weight": torch.zeros(10, 16),
}
attn.load_state_dict(state_dict=state_dict)
assert torch.equal(attn.gating_factor, torch.full((1, 4, 1, 1), 0.42))