TAPA / generate.py
xuxw98's picture
Upload 58 files
7d52396
raw
history blame
6.15 kB
import sys
import time
import warnings
from pathlib import Path
from typing import Optional
import lightning as L
import torch
# support running without installing as a package
wd = Path(__file__).parent.parent.resolve()
sys.path.append(str(wd))
from lit_llama import LLaMA, Tokenizer
from lit_llama.utils import lazy_load, llama_model_lookup, quantization
@torch.no_grad()
def generate(
model: LLaMA,
idx: torch.Tensor,
max_new_tokens: int,
*,
max_seq_length: Optional[int] = None,
temperature: float = 1.0,
top_k: Optional[int] = None,
eos_id: Optional[int] = None,
) -> torch.Tensor:
"""Takes a conditioning sequence (prompt) as input and continues to generate as many tokens as requested.
The implementation of this function is modified from A. Karpathy's nanoGPT.
Args:
model: The model to use.
idx: Tensor of shape (T) with indices of the prompt sequence.
max_new_tokens: The number of new tokens to generate.
max_seq_length: The maximum sequence length allowed.
temperature: Scales the predicted logits by 1 / temperature
top_k: If specified, only sample among the tokens with the k highest probabilities
eos_id: If specified, stop generating any more token once the <eos> token is triggered
"""
# create an empty tensor of the expected final shape and fill in the current tokens
T = idx.size(0)
T_new = T + max_new_tokens
if max_seq_length is None:
max_seq_length = min(T_new, model.config.block_size)
device, dtype = idx.device, idx.dtype
# create an empty tensor of the expected final shape and fill in the current tokens
empty = torch.empty(T_new, dtype=dtype, device=device)
empty[:T] = idx
idx = empty
input_pos = torch.arange(0, T, device=device)
if idx.device.type == "xla":
import torch_xla.core.xla_model as xm
xm.mark_step()
# generate max_new_tokens tokens
for _ in range(max_new_tokens):
x = idx.index_select(0, input_pos).view(1, -1)
# forward
logits = model(x, max_seq_length, input_pos)
logits = logits[0, -1] / temperature
# optionally crop the logits to only the top k options
if top_k is not None:
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
logits = torch.where(logits < v[[-1]], -float("Inf"), logits)
probs = torch.nn.functional.softmax(logits, dim=-1)
idx_next = torch.multinomial(probs, num_samples=1).to(dtype=dtype)
# advance
input_pos = input_pos[-1:] + 1
if idx.device.type == "xla":
xm.mark_step()
# concatenate the new generation
idx = idx.index_copy(0, input_pos, idx_next)
# if <eos> token is triggered, return the output (stop generation)
if idx_next == eos_id:
return idx[:input_pos] # include the EOS token
return idx
def main(
prompt: str = "Hello, my name is",
*,
num_samples: int = 1,
max_new_tokens: int = 50,
top_k: int = 200,
temperature: float = 0.8,
checkpoint_path: Path = Path("checkpoints/lit-llama/7B/lit-llama.pth"),
tokenizer_path: Path = Path("checkpoints/lit-llama/tokenizer.model"),
quantize: Optional[str] = None,
) -> None:
"""Generates text samples based on a pre-trained LLaMA model and tokenizer.
Args:
prompt: The prompt string to use for generating the samples.
num_samples: The number of text samples to generate.
max_new_tokens: The number of generation steps to take.
top_k: The number of top most probable tokens to consider in the sampling process.
temperature: A value controlling the randomness of the sampling process. Higher values result in more random
samples.
checkpoint_path: The checkpoint path to load.
tokenizer_path: The tokenizer path to load.
quantize: Whether to quantize the model and using which method:
``"llm.int8"``: LLM.int8() mode,
``"gptq.int4"``: GPTQ 4-bit mode.
"""
assert checkpoint_path.is_file(), checkpoint_path
assert tokenizer_path.is_file(), tokenizer_path
precision = "bf16-true" if torch.cuda.is_available() and torch.cuda.is_bf16_supported() else "32-true"
fabric = L.Fabric(devices=1, precision=precision)
print("Loading model ...", file=sys.stderr)
t0 = time.time()
with lazy_load(checkpoint_path) as checkpoint:
name = llama_model_lookup(checkpoint)
with fabric.init_module(empty_init=True), quantization(mode=quantize):
model = LLaMA.from_name(name)
model.load_state_dict(checkpoint)
print(f"Time to load model: {time.time() - t0:.02f} seconds.", file=sys.stderr)
model.eval()
model = fabric.setup(model)
tokenizer = Tokenizer(tokenizer_path)
encoded = tokenizer.encode(prompt, bos=True, eos=False, device=fabric.device)
prompt_length = encoded.size(0)
L.seed_everything(1234)
for i in range(num_samples):
t0 = time.perf_counter()
y = generate(model, encoded, max_new_tokens, temperature=temperature, top_k=top_k)
t = time.perf_counter() - t0
model.reset_cache()
print(tokenizer.decode(y))
tokens_generated = y.size(0) - prompt_length
print(f"Time for inference {i + 1}: {t:.02f} sec total, {tokens_generated / t:.02f} tokens/sec", file=sys.stderr)
if fabric.device.type == "cuda":
print(f"Memory used: {torch.cuda.max_memory_reserved() / 1e9:.02f} GB", file=sys.stderr)
if __name__ == "__main__":
from jsonargparse import CLI
torch.set_float32_matmul_precision("high")
warnings.filterwarnings(
# Triggered internally at ../aten/src/ATen/EmptyTensor.cpp:31
"ignore",
message="ComplexHalf support is experimental and many operators don't support it yet"
)
warnings.filterwarnings(
# Triggered in bitsandbytes/autograd/_functions.py:298
"ignore",
message="MatMul8bitLt: inputs will be cast from torch.bfloat16 to float16 during quantization",
)
CLI(main)