Vincentqyw
fix: roma
8b973ee
#! /usr/bin/env python3
#
# %BANNER_BEGIN%
# ---------------------------------------------------------------------
# %COPYRIGHT_BEGIN%
#
# Magic Leap, Inc. ("COMPANY") CONFIDENTIAL
#
# Unpublished Copyright (c) 2020
# Magic Leap, Inc., All Rights Reserved.
#
# NOTICE: All information contained herein is, and remains the property
# of COMPANY. The intellectual and technical concepts contained herein
# are proprietary to COMPANY and may be covered by U.S. and Foreign
# Patents, patents in process, and are protected by trade secret or
# copyright law. Dissemination of this information or reproduction of
# this material is strictly forbidden unless prior written permission is
# obtained from COMPANY. Access to the source code contained herein is
# hereby forbidden to anyone except current COMPANY employees, managers
# or contractors who have executed Confidentiality and Non-disclosure
# agreements explicitly covering such access.
#
# The copyright notice above does not evidence any actual or intended
# publication or disclosure of this source code, which includes
# information that is confidential and/or proprietary, and is a trade
# secret, of COMPANY. ANY REPRODUCTION, MODIFICATION, DISTRIBUTION,
# PUBLIC PERFORMANCE, OR PUBLIC DISPLAY OF OR THROUGH USE OF THIS
# SOURCE CODE WITHOUT THE EXPRESS WRITTEN CONSENT OF COMPANY IS
# STRICTLY PROHIBITED, AND IN VIOLATION OF APPLICABLE LAWS AND
# INTERNATIONAL TREATIES. THE RECEIPT OR POSSESSION OF THIS SOURCE
# CODE AND/OR RELATED INFORMATION DOES NOT CONVEY OR IMPLY ANY RIGHTS
# TO REPRODUCE, DISCLOSE OR DISTRIBUTE ITS CONTENTS, OR TO MANUFACTURE,
# USE, OR SELL ANYTHING THAT IT MAY DESCRIBE, IN WHOLE OR IN PART.
#
# %COPYRIGHT_END%
# ----------------------------------------------------------------------
# %AUTHORS_BEGIN%
#
# Originating Authors: Paul-Edouard Sarlin
# Daniel DeTone
# Tomasz Malisiewicz
#
# %AUTHORS_END%
# --------------------------------------------------------------------*/
# %BANNER_END%
from pathlib import Path
import argparse
import cv2
import matplotlib.cm as cm
import torch
from models.matching import Matching
from models.utils import (
AverageTimer,
VideoStreamer,
make_matching_plot_fast,
frame2tensor,
)
torch.set_grad_enabled(False)
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="SuperGlue demo",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
parser.add_argument(
"--input",
type=str,
default="0",
help="ID of a USB webcam, URL of an IP camera, "
"or path to an image directory or movie file",
)
parser.add_argument(
"--output_dir",
type=str,
default=None,
help="Directory where to write output frames (If None, no output)",
)
parser.add_argument(
"--image_glob",
type=str,
nargs="+",
default=["*.png", "*.jpg", "*.jpeg"],
help="Glob if a directory of images is specified",
)
parser.add_argument(
"--skip",
type=int,
default=1,
help="Images to skip if input is a movie or directory",
)
parser.add_argument(
"--max_length",
type=int,
default=1000000,
help="Maximum length if input is a movie or directory",
)
parser.add_argument(
"--resize",
type=int,
nargs="+",
default=[640, 480],
help="Resize the input image before running inference. If two numbers, "
"resize to the exact dimensions, if one number, resize the max "
"dimension, if -1, do not resize",
)
parser.add_argument(
"--superglue",
choices={"indoor", "outdoor"},
default="indoor",
help="SuperGlue weights",
)
parser.add_argument(
"--max_keypoints",
type=int,
default=-1,
help="Maximum number of keypoints detected by Superpoint"
" ('-1' keeps all keypoints)",
)
parser.add_argument(
"--keypoint_threshold",
type=float,
default=0.005,
help="SuperPoint keypoint detector confidence threshold",
)
parser.add_argument(
"--nms_radius",
type=int,
default=4,
help="SuperPoint Non Maximum Suppression (NMS) radius" " (Must be positive)",
)
parser.add_argument(
"--sinkhorn_iterations",
type=int,
default=20,
help="Number of Sinkhorn iterations performed by SuperGlue",
)
parser.add_argument(
"--match_threshold", type=float, default=0.2, help="SuperGlue match threshold"
)
parser.add_argument(
"--show_keypoints", action="store_true", help="Show the detected keypoints"
)
parser.add_argument(
"--no_display",
action="store_true",
help="Do not display images to screen. Useful if running remotely",
)
parser.add_argument(
"--force_cpu", action="store_true", help="Force pytorch to run in CPU mode."
)
opt = parser.parse_args()
print(opt)
if len(opt.resize) == 2 and opt.resize[1] == -1:
opt.resize = opt.resize[0:1]
if len(opt.resize) == 2:
print("Will resize to {}x{} (WxH)".format(opt.resize[0], opt.resize[1]))
elif len(opt.resize) == 1 and opt.resize[0] > 0:
print("Will resize max dimension to {}".format(opt.resize[0]))
elif len(opt.resize) == 1:
print("Will not resize images")
else:
raise ValueError("Cannot specify more than two integers for --resize")
device = "cuda" if torch.cuda.is_available() and not opt.force_cpu else "cpu"
print('Running inference on device "{}"'.format(device))
config = {
"superpoint": {
"nms_radius": opt.nms_radius,
"keypoint_threshold": opt.keypoint_threshold,
"max_keypoints": opt.max_keypoints,
},
"superglue": {
"weights": opt.superglue,
"sinkhorn_iterations": opt.sinkhorn_iterations,
"match_threshold": opt.match_threshold,
},
}
matching = Matching(config).eval().to(device)
keys = ["keypoints", "scores", "descriptors"]
vs = VideoStreamer(opt.input, opt.resize, opt.skip, opt.image_glob, opt.max_length)
frame, ret = vs.next_frame()
assert ret, "Error when reading the first frame (try different --input?)"
frame_tensor = frame2tensor(frame, device)
last_data = matching.superpoint({"image": frame_tensor})
last_data = {k + "0": last_data[k] for k in keys}
last_data["image0"] = frame_tensor
last_frame = frame
last_image_id = 0
if opt.output_dir is not None:
print("==> Will write outputs to {}".format(opt.output_dir))
Path(opt.output_dir).mkdir(exist_ok=True)
# Create a window to display the demo.
if not opt.no_display:
cv2.namedWindow("SuperGlue matches", cv2.WINDOW_NORMAL)
cv2.resizeWindow("SuperGlue matches", 640 * 2, 480)
else:
print("Skipping visualization, will not show a GUI.")
# Print the keyboard help menu.
print(
"==> Keyboard control:\n"
"\tn: select the current frame as the anchor\n"
"\te/r: increase/decrease the keypoint confidence threshold\n"
"\td/f: increase/decrease the match filtering threshold\n"
"\tk: toggle the visualization of keypoints\n"
"\tq: quit"
)
timer = AverageTimer()
while True:
frame, ret = vs.next_frame()
if not ret:
print("Finished demo_superglue.py")
break
timer.update("data")
stem0, stem1 = last_image_id, vs.i - 1
frame_tensor = frame2tensor(frame, device)
pred = matching({**last_data, "image1": frame_tensor})
kpts0 = last_data["keypoints0"][0].cpu().numpy()
kpts1 = pred["keypoints1"][0].cpu().numpy()
matches = pred["matches0"][0].cpu().numpy()
confidence = pred["matching_scores0"][0].cpu().numpy()
timer.update("forward")
valid = matches > -1
mkpts0 = kpts0[valid]
mkpts1 = kpts1[matches[valid]]
color = cm.jet(confidence[valid])
text = [
"SuperGlue",
"Keypoints: {}:{}".format(len(kpts0), len(kpts1)),
"Matches: {}".format(len(mkpts0)),
]
k_thresh = matching.superpoint.config["keypoint_threshold"]
m_thresh = matching.superglue.config["match_threshold"]
small_text = [
"Keypoint Threshold: {:.4f}".format(k_thresh),
"Match Threshold: {:.2f}".format(m_thresh),
"Image Pair: {:06}:{:06}".format(stem0, stem1),
]
out = make_matching_plot_fast(
last_frame,
frame,
kpts0,
kpts1,
mkpts0,
mkpts1,
color,
text,
path=None,
show_keypoints=opt.show_keypoints,
small_text=small_text,
)
if not opt.no_display:
cv2.imshow("SuperGlue matches", out)
key = chr(cv2.waitKey(1) & 0xFF)
if key == "q":
vs.cleanup()
print("Exiting (via q) demo_superglue.py")
break
elif key == "n": # set the current frame as anchor
last_data = {k + "0": pred[k + "1"] for k in keys}
last_data["image0"] = frame_tensor
last_frame = frame
last_image_id = vs.i - 1
elif key in ["e", "r"]:
# Increase/decrease keypoint threshold by 10% each keypress.
d = 0.1 * (-1 if key == "e" else 1)
matching.superpoint.config["keypoint_threshold"] = min(
max(
0.0001,
matching.superpoint.config["keypoint_threshold"] * (1 + d),
),
1,
)
print(
"\nChanged the keypoint threshold to {:.4f}".format(
matching.superpoint.config["keypoint_threshold"]
)
)
elif key in ["d", "f"]:
# Increase/decrease match threshold by 0.05 each keypress.
d = 0.05 * (-1 if key == "d" else 1)
matching.superglue.config["match_threshold"] = min(
max(0.05, matching.superglue.config["match_threshold"] + d), 0.95
)
print(
"\nChanged the match threshold to {:.2f}".format(
matching.superglue.config["match_threshold"]
)
)
elif key == "k":
opt.show_keypoints = not opt.show_keypoints
timer.update("viz")
timer.print()
if opt.output_dir is not None:
# stem = 'matches_{:06}_{:06}'.format(last_image_id, vs.i-1)
stem = "matches_{:06}_{:06}".format(stem0, stem1)
out_file = str(Path(opt.output_dir, stem + ".png"))
print("\nWriting image to {}".format(out_file))
cv2.imwrite(out_file, out)
cv2.destroyAllWindows()
vs.cleanup()