Vincentqyw
fix: roma
8b973ee
raw
history blame
6.56 kB
import copy
import os
import cv2
import glob
import logging
import argparse
import numpy as np
from tqdm import tqdm
from alike import ALike, configs
class ImageLoader(object):
def __init__(self, filepath: str):
self.N = 3000
if filepath.startswith("camera"):
camera = int(filepath[6:])
self.cap = cv2.VideoCapture(camera)
if not self.cap.isOpened():
raise IOError(f"Can't open camera {camera}!")
logging.info(f"Opened camera {camera}")
self.mode = "camera"
elif os.path.exists(filepath):
if os.path.isfile(filepath):
self.cap = cv2.VideoCapture(filepath)
if not self.cap.isOpened():
raise IOError(f"Can't open video {filepath}!")
rate = self.cap.get(cv2.CAP_PROP_FPS)
self.N = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT)) - 1
duration = self.N / rate
logging.info(f"Opened video {filepath}")
logging.info(f"Frames: {self.N}, FPS: {rate}, Duration: {duration}s")
self.mode = "video"
else:
self.images = (
glob.glob(os.path.join(filepath, "*.png"))
+ glob.glob(os.path.join(filepath, "*.jpg"))
+ glob.glob(os.path.join(filepath, "*.ppm"))
)
self.images.sort()
self.N = len(self.images)
logging.info(f"Loading {self.N} images")
self.mode = "images"
else:
raise IOError(
"Error filepath (camerax/path of images/path of videos): ", filepath
)
def __getitem__(self, item):
if self.mode == "camera" or self.mode == "video":
if item > self.N:
return None
ret, img = self.cap.read()
if not ret:
raise "Can't read image from camera"
if self.mode == "video":
self.cap.set(cv2.CAP_PROP_POS_FRAMES, item)
elif self.mode == "images":
filename = self.images[item]
img = cv2.imread(filename)
if img is None:
raise Exception("Error reading image %s" % filename)
return img
def __len__(self):
return self.N
class SimpleTracker(object):
def __init__(self):
self.pts_prev = None
self.desc_prev = None
def update(self, img, pts, desc):
N_matches = 0
if self.pts_prev is None:
self.pts_prev = pts
self.desc_prev = desc
out = copy.deepcopy(img)
for pt1 in pts:
p1 = (int(round(pt1[0])), int(round(pt1[1])))
cv2.circle(out, p1, 1, (0, 0, 255), -1, lineType=16)
else:
matches = self.mnn_mather(self.desc_prev, desc)
mpts1, mpts2 = self.pts_prev[matches[:, 0]], pts[matches[:, 1]]
N_matches = len(matches)
out = copy.deepcopy(img)
for pt1, pt2 in zip(mpts1, mpts2):
p1 = (int(round(pt1[0])), int(round(pt1[1])))
p2 = (int(round(pt2[0])), int(round(pt2[1])))
cv2.line(out, p1, p2, (0, 255, 0), lineType=16)
cv2.circle(out, p2, 1, (0, 0, 255), -1, lineType=16)
self.pts_prev = pts
self.desc_prev = desc
return out, N_matches
def mnn_mather(self, desc1, desc2):
sim = desc1 @ desc2.transpose()
sim[sim < 0.9] = 0
nn12 = np.argmax(sim, axis=1)
nn21 = np.argmax(sim, axis=0)
ids1 = np.arange(0, sim.shape[0])
mask = ids1 == nn21[nn12]
matches = np.stack([ids1[mask], nn12[mask]])
return matches.transpose()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="ALike Demo.")
parser.add_argument(
"input",
type=str,
default="",
help='Image directory or movie file or "camera0" (for webcam0).',
)
parser.add_argument(
"--model",
choices=["alike-t", "alike-s", "alike-n", "alike-l"],
default="alike-t",
help="The model configuration",
)
parser.add_argument(
"--device", type=str, default="cuda", help="Running device (default: cuda)."
)
parser.add_argument(
"--top_k",
type=int,
default=-1,
help="Detect top K keypoints. -1 for threshold based mode, >0 for top K mode. (default: -1)",
)
parser.add_argument(
"--scores_th",
type=float,
default=0.2,
help="Detector score threshold (default: 0.2).",
)
parser.add_argument(
"--n_limit",
type=int,
default=5000,
help="Maximum number of keypoints to be detected (default: 5000).",
)
parser.add_argument(
"--no_display",
action="store_true",
help="Do not display images to screen. Useful if running remotely (default: False).",
)
parser.add_argument(
"--no_sub_pixel",
action="store_true",
help="Do not detect sub-pixel keypoints (default: False).",
)
args = parser.parse_args()
logging.basicConfig(level=logging.INFO)
image_loader = ImageLoader(args.input)
model = ALike(
**configs[args.model],
device=args.device,
top_k=args.top_k,
scores_th=args.scores_th,
n_limit=args.n_limit,
)
tracker = SimpleTracker()
if not args.no_display:
logging.info("Press 'q' to stop!")
cv2.namedWindow(args.model)
runtime = []
progress_bar = tqdm(image_loader)
for img in progress_bar:
if img is None:
break
img_rgb = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
pred = model(img_rgb, sub_pixel=not args.no_sub_pixel)
kpts = pred["keypoints"]
desc = pred["descriptors"]
runtime.append(pred["time"])
out, N_matches = tracker.update(img, kpts, desc)
ave_fps = (1.0 / np.stack(runtime)).mean()
status = f"Fps:{ave_fps:.1f}, Keypoints/Matches: {len(kpts)}/{N_matches}"
progress_bar.set_description(status)
if not args.no_display:
cv2.setWindowTitle(args.model, args.model + ": " + status)
cv2.imshow(args.model, out)
if cv2.waitKey(1) == ord("q"):
break
logging.info("Finished!")
if not args.no_display:
logging.info("Press any key to exit!")
cv2.waitKey()