Vincentqyw
update: rord
ab830e5
raw
history blame
7.01 kB
import numpy as np
import copy
import argparse
import os, sys
import open3d as o3d
from sys import argv
from PIL import Image
import math
import cv2
import torch
sys.path.append("../")
from lib.extractMatchTop import getPerspKeypoints, getPerspKeypointsEnsemble, siftMatching
from lib.model_test import D2Net
#### Cuda ####
use_cuda = torch.cuda.is_available()
device = torch.device('cuda:0' if use_cuda else 'cpu')
#### Argument Parsing ####
parser = argparse.ArgumentParser(description='RoRD ICP evaluation')
parser.add_argument(
'--rgb1', type=str, default = 'rgb/rgb2_1.jpg',
help='path to the rgb image1'
)
parser.add_argument(
'--rgb2', type=str, default = 'rgb/rgb2_2.jpg',
help='path to the rgb image2'
)
parser.add_argument(
'--depth1', type=str, default = 'depth/depth2_1.png',
help='path to the depth image1'
)
parser.add_argument(
'--depth2', type=str, default = 'depth/depth2_2.png',
help='path to the depth image2'
)
parser.add_argument(
'--model_rord', type=str, default = '../models/rord.pth',
help='path to the RoRD model for evaluation'
)
parser.add_argument(
'--model_d2', type=str,
help='path to the vanilla D2-Net model for evaluation'
)
parser.add_argument(
'--model_ens', action='store_true',
help='ensemble model of RoRD + D2-Net'
)
parser.add_argument(
'--sift', action='store_true',
help='Sift'
)
parser.add_argument(
'--camera_file', type=str, default='../configs/camera.txt',
help='path to the camera intrinsics file. In order: focal_x, focal_y, center_x, center_y, scaling_factor.'
)
parser.add_argument(
'--viz3d', action='store_true',
help='visualize the pointcloud registrations'
)
args = parser.parse_args()
if args.model_ens: # Change default paths accordingly for ensemble
model1_ens = '../../models/rord.pth'
model2_ens = '../../models/d2net.pth'
def draw_registration_result(source, target, transformation):
source_temp = copy.deepcopy(source)
target_temp = copy.deepcopy(target)
source_temp.transform(transformation)
target_temp += source_temp
# print("Saved registered PointCloud.")
# o3d.io.write_point_cloud("registered.pcd", target_temp)
trgSph.append(source_temp); trgSph.append(target_temp)
axis1 = o3d.geometry.TriangleMesh.create_coordinate_frame(size=0.5, origin=[0, 0, 0])
axis2 = o3d.geometry.TriangleMesh.create_coordinate_frame(size=0.5, origin=[0, 0, 0])
axis2.transform(transformation)
trgSph.append(axis1); trgSph.append(axis2)
print("Showing registered PointCloud.")
o3d.visualization.draw_geometries(trgSph)
def readDepth(depthFile):
depth = Image.open(depthFile)
if depth.mode != "I":
raise Exception("Depth image is not in intensity format")
return np.asarray(depth)
def readCamera(camera):
with open (camera, "rt") as file:
contents = file.read().split()
focalX = float(contents[0])
focalY = float(contents[1])
centerX = float(contents[2])
centerY = float(contents[3])
scalingFactor = float(contents[4])
return focalX, focalY, centerX, centerY, scalingFactor
def getPointCloud(rgbFile, depthFile, pts):
thresh = 15.0
depth = readDepth(depthFile)
rgb = Image.open(rgbFile)
points = []
colors = []
corIdx = [-1]*len(pts)
corPts = [None]*len(pts)
ptIdx = 0
for v in range(depth.shape[0]):
for u in range(depth.shape[1]):
Z = depth[v, u] / scalingFactor
if Z==0: continue
if (Z > thresh): continue
X = (u - centerX) * Z / focalX
Y = (v - centerY) * Z / focalY
points.append((X, Y, Z))
colors.append(rgb.getpixel((u, v)))
if((u, v) in pts):
# print("Point found.")
index = pts.index((u, v))
corIdx[index] = ptIdx
corPts[index] = (X, Y, Z)
ptIdx = ptIdx+1
points = np.asarray(points)
colors = np.asarray(colors)
pcd = o3d.geometry.PointCloud()
pcd.points = o3d.utility.Vector3dVector(points)
pcd.colors = o3d.utility.Vector3dVector(colors/255)
return pcd, corIdx, corPts
def convertPts(A):
X = A[0]; Y = A[1]
x = []; y = []
for i in range(len(X)):
x.append(int(float(X[i])))
for i in range(len(Y)):
y.append(int(float(Y[i])))
pts = []
for i in range(len(x)):
pts.append((x[i], y[i]))
return pts
def getSphere(pts):
sphs = []
for ele in pts:
if(ele is not None):
sphere = o3d.geometry.TriangleMesh.create_sphere(radius=0.03)
sphere.paint_uniform_color([0.9, 0.2, 0])
trans = np.identity(4)
trans[0, 3] = ele[0]
trans[1, 3] = ele[1]
trans[2, 3] = ele[2]
sphere.transform(trans)
sphs.append(sphere)
return sphs
def get3dCor(src, trg):
corr = []
for sId, tId in zip(src, trg):
if(sId != -1 and tId != -1):
corr.append((sId, tId))
corr = np.asarray(corr)
return corr
if __name__ == "__main__":
focalX, focalY, centerX, centerY, scalingFactor = readCamera(args.camera_file)
rgb_name_src = os.path.basename(args.rgb1)
H_name_src = os.path.splitext(rgb_name_src)[0] + '.npy'
srcH = os.path.join(os.path.dirname(args.rgb1), H_name_src)
rgb_name_trg = os.path.basename(args.rgb2)
H_name_trg = os.path.splitext(rgb_name_trg)[0] + '.npy'
trgH = os.path.join(os.path.dirname(args.rgb2), H_name_trg)
use_cuda = torch.cuda.is_available()
device = torch.device('cuda:0' if use_cuda else 'cpu')
model1 = D2Net(model_file=args.model_d2)
model1 = model1.to(device)
model2 = D2Net(model_file=args.model_rord)
model2 = model2.to(device)
if args.model_rord:
srcPts, trgPts, matchImg, matchImgOrtho = getPerspKeypoints(args.rgb1, args.rgb2, srcH, trgH, model2, device)
elif args.model_d2:
srcPts, trgPts, matchImg, matchImgOrtho = getPerspKeypoints(args.rgb1, args.rgb2, srcH, trgH, model1, device)
elif args.model_ens:
model1 = D2Net(model_file=model1_ens)
model1 = model1.to(device)
model2 = D2Net(model_file=model2_ens)
model2 = model2.to(device)
srcPts, trgPts, matchImg, matchImgOrtho = getPerspKeypointsEnsemble(model1, model2, args.rgb1, args.rgb2, srcH, trgH, device)
elif args.sift:
srcPts, trgPts, matchImg, matchImgOrtho = siftMatching(args.rgb1, args.rgb2, srcH, trgH, device)
#### Visualization ####
print("\nShowing matches in perspective and orthographic view. Press q\n")
cv2.imshow('Orthographic view', matchImgOrtho)
cv2.imshow('Perspective view', matchImg)
cv2.waitKey()
srcPts = convertPts(srcPts)
trgPts = convertPts(trgPts)
srcCld, srcIdx, srcCor = getPointCloud(args.rgb1, args.depth1, srcPts)
trgCld, trgIdx, trgCor = getPointCloud(args.rgb2, args.depth2, trgPts)
srcSph = getSphere(srcCor)
trgSph = getSphere(trgCor)
axis = o3d.geometry.TriangleMesh.create_coordinate_frame(size=0.5, origin=[0, 0, 0])
srcSph.append(srcCld); srcSph.append(axis)
trgSph.append(trgCld); trgSph.append(axis)
corr = get3dCor(srcIdx, trgIdx)
p2p = o3d.registration.TransformationEstimationPointToPoint()
trans_init = p2p.compute_transformation(srcCld, trgCld, o3d.utility.Vector2iVector(corr))
print("Transformation matrix: \n", trans_init)
if args.viz3d:
# o3d.visualization.draw_geometries(srcSph)
# o3d.visualization.draw_geometries(trgSph)
draw_registration_result(srcCld, trgCld, trans_init)