Vincentqyw
fix: roma
8b973ee
raw
history blame
4.23 kB
import argparse
import os
from os.path import join
import cv2
import torch
from matplotlib import pyplot as plt
from gluestick import batch_to_np, numpy_image_to_torch, GLUESTICK_ROOT
from .drawing import (
plot_images,
plot_lines,
plot_color_line_matches,
plot_keypoints,
plot_matches,
)
from .models.two_view_pipeline import TwoViewPipeline
def main():
# Parse input parameters
parser = argparse.ArgumentParser(
prog="GlueStick Demo",
description="Demo app to show the point and line matches obtained by GlueStick",
)
parser.add_argument("-img1", default=join("resources" + os.path.sep + "img1.jpg"))
parser.add_argument("-img2", default=join("resources" + os.path.sep + "img2.jpg"))
parser.add_argument("--max_pts", type=int, default=1000)
parser.add_argument("--max_lines", type=int, default=300)
parser.add_argument("--skip-imshow", default=False, action="store_true")
args = parser.parse_args()
# Evaluation config
conf = {
"name": "two_view_pipeline",
"use_lines": True,
"extractor": {
"name": "wireframe",
"sp_params": {
"force_num_keypoints": False,
"max_num_keypoints": args.max_pts,
},
"wireframe_params": {
"merge_points": True,
"merge_line_endpoints": True,
},
"max_n_lines": args.max_lines,
},
"matcher": {
"name": "gluestick",
"weights": str(
GLUESTICK_ROOT / "resources" / "weights" / "checkpoint_GlueStick_MD.tar"
),
"trainable": False,
},
"ground_truth": {
"from_pose_depth": False,
},
}
device = "cuda" if torch.cuda.is_available() else "cpu"
pipeline_model = TwoViewPipeline(conf).to(device).eval()
gray0 = cv2.imread(args.img1, 0)
gray1 = cv2.imread(args.img2, 0)
torch_gray0, torch_gray1 = numpy_image_to_torch(gray0), numpy_image_to_torch(gray1)
torch_gray0, torch_gray1 = (
torch_gray0.to(device)[None],
torch_gray1.to(device)[None],
)
x = {"image0": torch_gray0, "image1": torch_gray1}
pred = pipeline_model(x)
pred = batch_to_np(pred)
kp0, kp1 = pred["keypoints0"], pred["keypoints1"]
m0 = pred["matches0"]
line_seg0, line_seg1 = pred["lines0"], pred["lines1"]
line_matches = pred["line_matches0"]
valid_matches = m0 != -1
match_indices = m0[valid_matches]
matched_kps0 = kp0[valid_matches]
matched_kps1 = kp1[match_indices]
valid_matches = line_matches != -1
match_indices = line_matches[valid_matches]
matched_lines0 = line_seg0[valid_matches]
matched_lines1 = line_seg1[match_indices]
# Plot the matches
img0, img1 = cv2.cvtColor(gray0, cv2.COLOR_GRAY2BGR), cv2.cvtColor(
gray1, cv2.COLOR_GRAY2BGR
)
plot_images(
[img0, img1],
["Image 1 - detected lines", "Image 2 - detected lines"],
dpi=200,
pad=2.0,
)
plot_lines([line_seg0, line_seg1], ps=4, lw=2)
plt.gcf().canvas.manager.set_window_title("Detected Lines")
plt.savefig("detected_lines.png")
plot_images(
[img0, img1],
["Image 1 - detected points", "Image 2 - detected points"],
dpi=200,
pad=2.0,
)
plot_keypoints([kp0, kp1], colors="c")
plt.gcf().canvas.manager.set_window_title("Detected Points")
plt.savefig("detected_points.png")
plot_images(
[img0, img1],
["Image 1 - line matches", "Image 2 - line matches"],
dpi=200,
pad=2.0,
)
plot_color_line_matches([matched_lines0, matched_lines1], lw=2)
plt.gcf().canvas.manager.set_window_title("Line Matches")
plt.savefig("line_matches.png")
plot_images(
[img0, img1],
["Image 1 - point matches", "Image 2 - point matches"],
dpi=200,
pad=2.0,
)
plot_matches(matched_kps0, matched_kps1, "green", lw=1, ps=0)
plt.gcf().canvas.manager.set_window_title("Point Matches")
plt.savefig("detected_points.png")
if not args.skip_imshow:
plt.show()
if __name__ == "__main__":
main()