Spaces:
Running
Running
| import sys | |
| from pathlib import Path | |
| import torch | |
| from ..utils.base_model import BaseModel | |
| alike_path = Path(__file__).parent / "../../third_party/ALIKE" | |
| sys.path.append(str(alike_path)) | |
| from alike import ALike as Alike_ | |
| from alike import configs | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| class Alike(BaseModel): | |
| default_conf = { | |
| "model_name": "alike-t", # 'alike-t', 'alike-s', 'alike-n', 'alike-l' | |
| "use_relu": True, | |
| "multiscale": False, | |
| "max_keypoints": 1000, | |
| "detection_threshold": 0.5, | |
| "top_k": -1, | |
| "sub_pixel": False, | |
| } | |
| required_inputs = ["image"] | |
| def _init(self, conf): | |
| self.net = Alike_( | |
| **configs[conf["model_name"]], | |
| device=device, | |
| top_k=conf["top_k"], | |
| scores_th=conf["detection_threshold"], | |
| n_limit=conf["max_keypoints"], | |
| ) | |
| def _forward(self, data): | |
| image = data["image"] | |
| image = image.permute(0, 2, 3, 1).squeeze() | |
| image = image.cpu().numpy() * 255.0 | |
| pred = self.net(image, sub_pixel=self.conf["sub_pixel"]) | |
| keypoints = pred["keypoints"] | |
| descriptors = pred["descriptors"] | |
| scores = pred["scores"] | |
| return { | |
| "keypoints": torch.from_numpy(keypoints)[None], | |
| "scores": torch.from_numpy(scores)[None], | |
| "descriptors": torch.from_numpy(descriptors.T)[None], | |
| } | |