Spaces:
Running
Running
import matplotlib | |
import matplotlib.pyplot as plt | |
import numpy as np | |
import seaborn as sns | |
def plot_images(imgs, titles=None, cmaps="gray", dpi=100, pad=0.5, adaptive=True): | |
"""Plot a set of images horizontally. | |
Args: | |
imgs: a list of NumPy or PyTorch images, RGB (H, W, 3) or mono (H, W). | |
titles: a list of strings, as titles for each image. | |
cmaps: colormaps for monochrome images. | |
adaptive: whether the figure size should fit the image aspect ratios. | |
""" | |
n = len(imgs) | |
if not isinstance(cmaps, (list, tuple)): | |
cmaps = [cmaps] * n | |
if adaptive: | |
ratios = [i.shape[1] / i.shape[0] for i in imgs] # W / H | |
else: | |
ratios = [4 / 3] * n | |
figsize = [sum(ratios) * 4.5, 4.5] | |
fig, ax = plt.subplots( | |
1, n, figsize=figsize, dpi=dpi, gridspec_kw={"width_ratios": ratios} | |
) | |
if n == 1: | |
ax = [ax] | |
for i in range(n): | |
ax[i].imshow(imgs[i], cmap=plt.get_cmap(cmaps[i])) | |
ax[i].get_yaxis().set_ticks([]) | |
ax[i].get_xaxis().set_ticks([]) | |
ax[i].set_axis_off() | |
for spine in ax[i].spines.values(): # remove frame | |
spine.set_visible(False) | |
if titles: | |
ax[i].set_title(titles[i]) | |
fig.tight_layout(pad=pad) | |
return ax | |
def plot_keypoints(kpts, colors="lime", ps=4, alpha=1): | |
"""Plot keypoints for existing images. | |
Args: | |
kpts: list of ndarrays of size (N, 2). | |
colors: string, or list of list of tuples (one for each keypoints). | |
ps: size of the keypoints as float. | |
""" | |
if not isinstance(colors, list): | |
colors = [colors] * len(kpts) | |
axes = plt.gcf().axes | |
for a, k, c in zip(axes, kpts, colors): | |
a.scatter(k[:, 0], k[:, 1], c=c, s=ps, alpha=alpha, linewidths=0) | |
def plot_matches(kpts0, kpts1, color=None, lw=1.5, ps=4, indices=(0, 1), a=1.0): | |
"""Plot matches for a pair of existing images. | |
Args: | |
kpts0, kpts1: corresponding keypoints of size (N, 2). | |
color: color of each match, string or RGB tuple. Random if not given. | |
lw: width of the lines. | |
ps: size of the end points (no endpoint if ps=0) | |
indices: indices of the images to draw the matches on. | |
a: alpha opacity of the match lines. | |
""" | |
fig = plt.gcf() | |
ax = fig.axes | |
assert len(ax) > max(indices) | |
ax0, ax1 = ax[indices[0]], ax[indices[1]] | |
fig.canvas.draw() | |
assert len(kpts0) == len(kpts1) | |
if color is None: | |
color = matplotlib.cm.hsv(np.random.rand(len(kpts0))).tolist() | |
elif len(color) > 0 and not isinstance(color[0], (tuple, list)): | |
color = [color] * len(kpts0) | |
if lw > 0: | |
# transform the points into the figure coordinate system | |
transFigure = fig.transFigure.inverted() | |
fkpts0 = transFigure.transform(ax0.transData.transform(kpts0)) | |
fkpts1 = transFigure.transform(ax1.transData.transform(kpts1)) | |
fig.lines += [ | |
matplotlib.lines.Line2D( | |
(fkpts0[i, 0], fkpts1[i, 0]), | |
(fkpts0[i, 1], fkpts1[i, 1]), | |
zorder=1, | |
transform=fig.transFigure, | |
c=color[i], | |
linewidth=lw, | |
alpha=a, | |
) | |
for i in range(len(kpts0)) | |
] | |
# freeze the axes to prevent the transform to change | |
ax0.autoscale(enable=False) | |
ax1.autoscale(enable=False) | |
if ps > 0: | |
ax0.scatter(kpts0[:, 0], kpts0[:, 1], c=color, s=ps) | |
ax1.scatter(kpts1[:, 0], kpts1[:, 1], c=color, s=ps) | |
def plot_lines( | |
lines, | |
line_colors="orange", | |
point_colors="cyan", | |
ps=4, | |
lw=2, | |
alpha=1.0, | |
indices=(0, 1), | |
): | |
"""Plot lines and endpoints for existing images. | |
Args: | |
lines: list of ndarrays of size (N, 2, 2). | |
colors: string, or list of list of tuples (one for each keypoints). | |
ps: size of the keypoints as float pixels. | |
lw: line width as float pixels. | |
alpha: transparency of the points and lines. | |
indices: indices of the images to draw the matches on. | |
""" | |
if not isinstance(line_colors, list): | |
line_colors = [line_colors] * len(lines) | |
if not isinstance(point_colors, list): | |
point_colors = [point_colors] * len(lines) | |
fig = plt.gcf() | |
ax = fig.axes | |
assert len(ax) > max(indices) | |
axes = [ax[i] for i in indices] | |
fig.canvas.draw() | |
# Plot the lines and junctions | |
for a, l, lc, pc in zip(axes, lines, line_colors, point_colors): | |
for i in range(len(l)): | |
line = matplotlib.lines.Line2D( | |
(l[i, 0, 0], l[i, 1, 0]), | |
(l[i, 0, 1], l[i, 1, 1]), | |
zorder=1, | |
c=lc, | |
linewidth=lw, | |
alpha=alpha, | |
) | |
a.add_line(line) | |
pts = l.reshape(-1, 2) | |
a.scatter(pts[:, 0], pts[:, 1], c=pc, s=ps, linewidths=0, zorder=2, alpha=alpha) | |
def plot_color_line_matches(lines, correct_matches=None, lw=2, indices=(0, 1)): | |
"""Plot line matches for existing images with multiple colors. | |
Args: | |
lines: list of ndarrays of size (N, 2, 2). | |
correct_matches: bool array of size (N,) indicating correct matches. | |
lw: line width as float pixels. | |
indices: indices of the images to draw the matches on. | |
""" | |
n_lines = len(lines[0]) | |
colors = sns.color_palette("husl", n_colors=n_lines) | |
np.random.shuffle(colors) | |
alphas = np.ones(n_lines) | |
# If correct_matches is not None, display wrong matches with a low alpha | |
if correct_matches is not None: | |
alphas[~np.array(correct_matches)] = 0.2 | |
fig = plt.gcf() | |
ax = fig.axes | |
assert len(ax) > max(indices) | |
axes = [ax[i] for i in indices] | |
fig.canvas.draw() | |
# Plot the lines | |
for a, l in zip(axes, lines): | |
# Transform the points into the figure coordinate system | |
transFigure = fig.transFigure.inverted() | |
endpoint0 = transFigure.transform(a.transData.transform(l[:, 0])) | |
endpoint1 = transFigure.transform(a.transData.transform(l[:, 1])) | |
fig.lines += [ | |
matplotlib.lines.Line2D( | |
(endpoint0[i, 0], endpoint1[i, 0]), | |
(endpoint0[i, 1], endpoint1[i, 1]), | |
zorder=1, | |
transform=fig.transFigure, | |
c=colors[i], | |
alpha=alphas[i], | |
linewidth=lw, | |
) | |
for i in range(n_lines) | |
] | |