Spaces:
Running
Running
""" | |
from https://github.com/openai/gpt-2/, changed for chinese | |
""" | |
import json | |
import os | |
import sentencepiece as spm | |
""" | |
SentencePiece is an unsupervised text tokenizer and detokenizer mainly for Neural Network-based text generation | |
systems where the vocabulary size is predetermined prior to the neural model training. SentencePiece implements | |
subword units (e.g., byte-pair-encoding (BPE) [Sennrich et al.]) and unigram language model [Kudo.]) with the | |
extension of direct training from raw sentences. SentencePiece allows us to make a purely end-to-end | |
system that does not depend on language-specific pre/postprocessing. | |
https://github.com/google/sentencepiece | |
pip install sentencepiece | |
or git clone https://github.com/google/sentencepiece.git | |
python setup.py install | |
""" | |
CURRENT_DIR = os.path.dirname(os.path.abspath(__file__)) | |
PRETRAINED_MODEL_FILE = os.path.join(CURRENT_DIR, "chinese_sentencepiece/cog-pretrain.model") | |
def get_pairs(word): | |
pairs = set() | |
prev_char = word[0] | |
for char in word[1:]: | |
pairs.add((prev_char, char)) | |
prev_char = char | |
return pairs | |
class Encoder: | |
def __init__(self, encoder, bpe_merges): | |
self.encoder = encoder | |
self.decoder = {v: k for k, v in self.encoder.items()} | |
self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges)))) | |
self.cache = {} | |
self.max_len = 0 | |
def bpe(self, token): | |
if token in self.cache: | |
return self.cache[token] | |
word = tuple(token) | |
pairs = get_pairs(word) | |
if not pairs: | |
return token | |
while True: | |
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float('inf'))) | |
if bigram not in self.bpe_ranks: | |
break | |
first, second = bigram | |
new_word = [] | |
i = 0 | |
while i < len(word): | |
try: | |
j = word.index(first, i) | |
new_word.extend(word[i:j]) | |
i = j | |
except: | |
new_word.extend(word[i:]) | |
break | |
if word[i] == first and i < len(word) - 1 and word[i + 1] == second: | |
new_word.append(first + second) | |
i += 2 | |
else: | |
new_word.append(word[i]) | |
i += 1 | |
new_word = tuple(new_word) | |
word = new_word | |
if len(word) == 1: | |
break | |
else: | |
pairs = get_pairs(word) | |
word = ' '.join(word) | |
self.cache[token] = word | |
return word | |
def encode(self, text): | |
return [self.encoder.get(token, 1) for token in self.tokenize(text)] | |
def decode(self, tokens): | |
text = ''.join([self.decoder[token] for token in tokens]) | |
return text | |
def tokenize(self, text): | |
bpe_tokens = [] | |
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(text).split(' ')) | |
return bpe_tokens | |
def convert_tokens_to_ids(self, tokens): | |
return [self.encoder.get(token, 1) for token in tokens] | |
class Encoder_SP: | |
def __init__(self, model_path): | |
self.sp = spm.SentencePieceProcessor() | |
self.sp.Load(model_path) | |
def encode(self, text): | |
""" | |
text="...." | |
""" | |
return self.sp.EncodeAsIds(text) | |
def decode(self, tokens): | |
""" | |
tokens=[x1,x2,...] | |
""" | |
text = [int(token) for token in tokens] | |
# print(text) | |
return self.sp.DecodeIds(text) | |
def tokenize(self, text): | |
return self.sp.EncodeAsPieces(text) | |
def convert_tokens_to_ids(self, tokens): | |
return [self.sp.PieceToId(token) for token in tokens] | |
def convert_token_to_id(self, token): | |
return self.sp.PieceToId(token) | |
def convert_id_to_token(self, idx): | |
return self.sp.IdToPiece(idx) | |
def get_encoder(encoder_file, bpe_file): | |
# 以下是为了同一个函数入兼容sentencepiece | |
filepath, filename = os.path.split(encoder_file) | |
shotname, extension = os.path.splitext(filename) | |
if (".model" == extension) and (bpe_file == ""): | |
return Encoder_SP(encoder_file) | |
else: | |
with open(encoder_file, 'r', encoding="utf-8") as f: | |
encoder = json.load(f) | |
with open(bpe_file, 'r', encoding="utf-8") as f: | |
bpe_data = f.read() | |
bpe_merges = [tuple(merge_str.split()) for merge_str in bpe_data.split('\n')[1:-1]] | |
return Encoder( | |
encoder=encoder, | |
bpe_merges=bpe_merges, | |
) | |
def from_pretrained(): | |
return get_encoder(PRETRAINED_MODEL_FILE, "") |