tokenizer-arena / app.py
xu-song's picture
update
1ee0570
raw
history blame
9 kB
# coding=utf-8
# author: xusong
# time: 2022/8/23 16:06
"""
plots
table
## related demo
- [](http://text-processing.com/demo/tokenize/)
- [gpt-tokenizer](https://gpt-tokenizer.dev/)
- [llama-tokenizer-js](https://belladoreai.github.io/llama-tokenizer-js/example-demo/build/)
- [](https://huggingface.co/spaces/Xenova/the-tokenizer-playground)
## 可视化
[ The, 2, QUICK, Brown, Foxes, jumped, over, the, lazy, dog's, bone ]
"""
import json
import pandas as pd
import gradio as gr
from vocab import all_tokenizers, load_tokener
# 显示空格:https://blog.csdn.net/liuxiao723846/article/details/118994673
# 隐藏legend:
css = """
.space-show {white-space: pre-wrap;}
.cell-wrap {white-space: pre-wrap;}
.category-legend {display: none !important}
.statistics textarea {min-width: min(50px,100%) !important; font-size: 20px !important; font-weight: 600 !important; text-align: center !important; border: none !important;}
.statistics label {text-align: center !important;}
"""
example_text = """Replace this text in the input field to see how tokenization works
华为智能音箱发布:华为Sound X"""
# llama chatglm_6b gpt_nexo_20b baichuan baichuan_7b
examples = [
# ["空格测试: 2个空格 8个空格", "llama", "chatglm_6b"], # chatglm 有blank_n,
["标点测试:,。!?;", "baichuan_7b", "llama"],
["符号测试:🦙", "baichuan_7b", "llama"],
["中文测试:🦙", "baichuan_7b", "llama"],
["数字测试:(10086 + 98) = 100184", "baichuan_7b", "llama"],
]
def tokenize(text, tokenizer_type, color_num=5):
"""
TODO: cache tokenizer
"""
print(text, tokenizer_type)
pos_tokens = []
tokenizer = load_tokener(tokenizer_type)
encoding = tokenizer.encode(text)
table = []
for idx, token_id in enumerate(encoding):
decode_text = tokenizer.decode([token_id]) # 特殊字符解码后会统一变成 �,对应 "\ufffd"
pos_tokens.extend([(decode_text, str(idx % color_num))])
# token "Byte": # 这是 utf-8编码吧?
token = tokenizer.convert_ids_to_tokens([token_id])[0]
if isinstance(token, bytes):
try:
token_str = token.decode("utf-8")
except:
token_str = token.decode("utf-8", errors="ignore")
print("decode_error", token, token_str)
token_bytes = token
json_dumps = json.dumps(token_str)
elif isinstance(token, str):
token_str = token
token_bytes = bytes(token_str, "utf-8")
json_dumps = json.dumps(token_str)
else:
return
# ⭐
table.append(
{"TokenID": token_id,
"Token": token_str, # utf-8解码后的字符串,为什么有些是 <0xE7>,表示什么?比如llama
"Text": decode_text, #
# "Bytes": token_bytes, # bytes类型在gradio前端页面被解码成字符串,比如 b'\xe4\xb8\xad' 仍然显示成 "中"。因此 str(token_bytes)
"Bytes": str(token_bytes),
# "Unicode": json_dumps # unicode, 如果是ascii码,就直接显示。如果不是ascii码,就显示unicode
}
)
table_df = pd.DataFrame(table)
print(table)
# print(table_df)
return pos_tokens, table_df, len(encoding)
def tokenize_pair(text, tokenizer_type_1, tokenizer_type_2):
pos_tokens_1, table_df_1, token_size_1 = tokenize(text, tokenizer_type_1)
pos_tokens_2, table_df_2, token_size_2 = tokenize(text, tokenizer_type_2)
return pos_tokens_1, table_df_1, token_size_1, pos_tokens_2, table_df_2, token_size_2
def get_vocab_size(tokenizer_type):
tokenizer = load_tokener(tokenizer_type)
return tokenizer.vocab_size
def test_coding():
bytes1 = b'\xe4\xb8\xad'
print(bytes1) # b'\xe4\xb8\xad'
with gr.Blocks(css=css) as demo:
gr.HTML("""<h1 align="center">Tokenizer Arena ⚔️</h1>""")
# links: https://www.coderstool.com/utf8-encoding-decoding
# 功能:输入文本,进行分词
# 分词器:常见的分词器有集中,
# 背景:方便分词、看词粒度、对比
#
# Byte: 表示分词
gr.Markdown("## Input Text")
user_input = gr.Textbox(
value=example_text,
label="Input Text",
lines=5,
show_label=False,
) # placeholder="Enter sentence here..."
# submitBtn = gr.Button("生成回复", variant="primary")
gr.Markdown("## Tokenization")
with gr.Row():
with gr.Column(scale=6):
with gr.Group():
tokenizer_type_1 = gr.Dropdown(
all_tokenizers,
value="llama",
label="Tokenizer 1",
)
with gr.Group():
"""
<div class="stat"><div class="stat-value">69</div><div class="stat-label">Characters</div></div>
"""
with gr.Row():
stats_vocab_size_1 = gr.TextArea(
label="VocabSize",
lines=1,
elem_classes="statistics"
)
stats_token_size_1 = gr.TextArea(
label="Tokens",
lines=1,
elem_classes="statistics"
)
stats_3 = gr.TextArea(
label="Compress Rate",
lines=1,
elem_classes="statistics"
)
# https://www.onlinewebfonts.com/icon/418591
gr.Image("images/VS.svg", scale=1, show_label=False, show_download_button=False, container=False) # height=10,
with gr.Column(scale=6):
with gr.Group():
tokenizer_type_2 = gr.Dropdown(
all_tokenizers,
value="baichuan_7b",
label="Tokenizer 2",
)
with gr.Group():
with gr.Row():
stats_vocab_size_2 = gr.TextArea(
label="VocabSize",
lines=1,
elem_classes="statistics"
)
stats_token_size_2 = gr.TextArea(
label="Tokens",
lines=1,
elem_classes="statistics"
)
stats_6 = gr.TextArea(
label="Compress Rate",
lines=1,
elem_classes="statistics"
)
# TODO: 图 表 压缩率
with gr.Row():
with gr.Column():
output_text_1 = gr.Highlightedtext(
label="Tokens 1",
show_legend=True,
elem_classes="space-show"
)
with gr.Column():
output_text_2 = gr.Highlightedtext(
label="Tokens 2",
show_legend=True,
elem_classes="space-show"
)
with gr.Row():
output_table_1 = gr.Dataframe(
# headers=["TokenID", "Byte", "Text"],
# datatype=["str", "str", "str"],
# elem_classes="space-show", # 给整个Dataframe加这个css不起作用,因此直接修改cell-wrap
)
output_table_2 = gr.Dataframe(
# headers=["TokenID", "Token", "Text"],
# datatype=["str", "str", "str"],
)
tokenizer_type_1.change(tokenize, [user_input, tokenizer_type_1], [output_text_1, output_table_1, stats_token_size_1])
tokenizer_type_1.change(get_vocab_size, [tokenizer_type_1], [stats_vocab_size_1])
user_input.change(tokenize_pair,
[user_input, tokenizer_type_1, tokenizer_type_2],
[output_text_1, output_table_1, stats_token_size_1, output_text_2, output_table_2, stats_token_size_2])
tokenizer_type_2.change(tokenize, [user_input, tokenizer_type_2], [output_text_2, output_table_2, stats_token_size_2])
tokenizer_type_2.change(get_vocab_size, [tokenizer_type_2], [stats_vocab_size_2])
gr.Examples(
examples,
[user_input, tokenizer_type_1, tokenizer_type_2],
[output_text_1, output_table_1, stats_token_size_1, output_text_2, output_table_2, stats_token_size_2],
tokenize_pair,
cache_examples=True,
)
# submitBtn.click(tokenize, [user_input, tokenizer_type], outputs,
# show_progress=True)
# examples=[
# ["What a beautiful morning for a walk!"],
# ["It was the best of times, it was the worst of times."],
# ["多个空格 It ss was the best of times, it was the worst of times."],
# ]
if __name__ == "__main__":
demo.launch()