xu song
commited on
Commit
·
8988bbf
1
Parent(s):
b597747
update
Browse files- README.md +1 -1
- app.py +69 -34
- models/cpp_qwen2.py +52 -26
- models/{qwen2_util.py → hf_qwen2.py} +51 -37
- requirements.txt +1 -0
README.md
CHANGED
@@ -4,7 +4,7 @@ emoji: 💬
|
|
4 |
colorFrom: yellow
|
5 |
colorTo: purple
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 4.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: apache-2.0
|
|
|
4 |
colorFrom: yellow
|
5 |
colorTo: purple
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 4.39.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: apache-2.0
|
app.py
CHANGED
@@ -2,6 +2,10 @@
|
|
2 |
来自 https://github.com/OpenLMLab/MOSS/blob/main/moss_web_demo_gradio.py
|
3 |
|
4 |
|
|
|
|
|
|
|
|
|
5 |
# 单卡报错
|
6 |
python moss_web_demo_gradio.py --model_name fnlp/moss-moon-003-sft --gpu 0,1,2,3
|
7 |
|
@@ -9,6 +13,11 @@ python moss_web_demo_gradio.py --model_name fnlp/moss-moon-003-sft --gpu 0,1,2,3
|
|
9 |
- 第一句:
|
10 |
- 代码和表格的预览
|
11 |
- 可编辑chatbot:https://github.com/gradio-app/gradio/issues/4444
|
|
|
|
|
|
|
|
|
|
|
12 |
"""
|
13 |
|
14 |
from transformers.generation.utils import logger
|
@@ -18,13 +27,9 @@ import argparse
|
|
18 |
import warnings
|
19 |
import torch
|
20 |
import os
|
21 |
-
# from
|
22 |
-
from models.
|
23 |
-
# generate_query = None
|
24 |
-
|
25 |
-
# gr.ChatInterface
|
26 |
|
27 |
-
# from gpt35 import build_message_for_gpt35, send_one_query
|
28 |
|
29 |
#
|
30 |
# def postprocess(self, y):
|
@@ -75,61 +80,87 @@ def parse_text(text):
|
|
75 |
|
76 |
|
77 |
def generate_query(chatbot, history):
|
78 |
-
if history and history[-1][
|
|
|
79 |
return None, chatbot, history
|
80 |
query = bot.generate_query(history)
|
81 |
# chatbot.append((query, ""))
|
82 |
chatbot.append((query, None))
|
83 |
-
history
|
84 |
return query, chatbot, history
|
85 |
|
|
|
86 |
def generate_response(query, chatbot, history):
|
87 |
"""
|
88 |
-
自动模式下:query is None
|
89 |
-
人工模式下:query
|
90 |
:param query:
|
91 |
:param chatbot:
|
92 |
:param history:
|
93 |
:return:
|
94 |
"""
|
95 |
-
|
96 |
-
|
97 |
-
# response = response["choices"][0]["message"]["content"]
|
98 |
|
99 |
-
|
100 |
-
|
101 |
return chatbot, history
|
102 |
|
103 |
-
|
104 |
-
|
105 |
-
response = bot.generate_response(query, history[:-1])
|
106 |
-
# chatbot.append((query, response))
|
107 |
-
history[-1] = (query, response)
|
108 |
chatbot[-1] = (query, response)
|
|
|
109 |
print(f"chatbot is {chatbot}")
|
110 |
print(f"history is {history}")
|
111 |
return chatbot, history
|
112 |
|
113 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
def reset_user_input():
|
115 |
return gr.update(value='')
|
116 |
|
117 |
|
118 |
-
def reset_state():
|
119 |
-
return [], []
|
|
|
120 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
"""
|
123 |
TODO: 使用说明
|
124 |
-
|
125 |
-
avatar_images
|
126 |
"""
|
127 |
with gr.Blocks() as demo:
|
128 |
-
|
129 |
-
|
130 |
-
gr.
|
131 |
-
|
132 |
-
|
|
|
|
|
|
|
|
|
|
|
133 |
with gr.Row():
|
134 |
with gr.Column(scale=4):
|
135 |
user_input = gr.Textbox(show_label=False, placeholder="Input...", lines=10)
|
@@ -156,18 +187,22 @@ with gr.Blocks() as demo:
|
|
156 |
# info="Will add more animals later!"
|
157 |
),
|
158 |
|
159 |
-
history = gr.State([
|
|
|
|
|
160 |
|
161 |
submit_btn.click(generate_response, [user_input, chatbot, history], [chatbot, history],
|
162 |
-
|
163 |
# submit_btn.click(reset_user_input, [], [user_input])
|
164 |
|
165 |
-
clear_btn.click(reset_state, outputs=[chatbot, history], show_progress=
|
166 |
|
167 |
-
generate_query_btn.click(generate_query, [chatbot, history], outputs=[user_input, chatbot, history],
|
|
|
168 |
|
169 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
170 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"
|
|
|
171 |
gr.Slider(
|
172 |
minimum=0.1,
|
173 |
maximum=1.0,
|
|
|
2 |
来自 https://github.com/OpenLMLab/MOSS/blob/main/moss_web_demo_gradio.py
|
3 |
|
4 |
|
5 |
+
# 难点
|
6 |
+
|
7 |
+
|
8 |
+
|
9 |
# 单卡报错
|
10 |
python moss_web_demo_gradio.py --model_name fnlp/moss-moon-003-sft --gpu 0,1,2,3
|
11 |
|
|
|
13 |
- 第一句:
|
14 |
- 代码和表格的预览
|
15 |
- 可编辑chatbot:https://github.com/gradio-app/gradio/issues/4444
|
16 |
+
- 一个button,
|
17 |
+
|
18 |
+
## Reference
|
19 |
+
|
20 |
+
-
|
21 |
"""
|
22 |
|
23 |
from transformers.generation.utils import logger
|
|
|
27 |
import warnings
|
28 |
import torch
|
29 |
import os
|
30 |
+
# from models.hf_qwen2 import bot
|
31 |
+
from models.cpp_qwen2 import bot
|
|
|
|
|
|
|
32 |
|
|
|
33 |
|
34 |
#
|
35 |
# def postprocess(self, y):
|
|
|
80 |
|
81 |
|
82 |
def generate_query(chatbot, history):
|
83 |
+
if history and history[-1]["role"] == "user": # 该生成response了
|
84 |
+
gr.Warning('You should generate assistant-response.')
|
85 |
return None, chatbot, history
|
86 |
query = bot.generate_query(history)
|
87 |
# chatbot.append((query, ""))
|
88 |
chatbot.append((query, None))
|
89 |
+
history.append({"role": "user", "content": query})
|
90 |
return query, chatbot, history
|
91 |
|
92 |
+
|
93 |
def generate_response(query, chatbot, history):
|
94 |
"""
|
95 |
+
自动模式下:query is None
|
96 |
+
人工模式下:query 是用户输入
|
97 |
:param query:
|
98 |
:param chatbot:
|
99 |
:param history:
|
100 |
:return:
|
101 |
"""
|
102 |
+
if query and history[-1]["role"] != "user":
|
103 |
+
history.append({"role": "user", "content": query})
|
|
|
104 |
|
105 |
+
if history[-1]["role"] != "user":
|
106 |
+
gr.Warning('You should generate or type user-input first.')
|
107 |
return chatbot, history
|
108 |
|
109 |
+
response = bot.generate_response(history)
|
110 |
+
query = history[-1]["content"]
|
|
|
|
|
|
|
111 |
chatbot[-1] = (query, response)
|
112 |
+
history.append({"role": "assistant", "content": response})
|
113 |
print(f"chatbot is {chatbot}")
|
114 |
print(f"history is {history}")
|
115 |
return chatbot, history
|
116 |
|
117 |
|
118 |
+
def generate():
|
119 |
+
"""
|
120 |
+
|
121 |
+
:return:
|
122 |
+
"""
|
123 |
+
pass
|
124 |
+
|
125 |
+
|
126 |
+
def regenerate():
|
127 |
+
"""
|
128 |
+
删除上一轮,重新生成。
|
129 |
+
:return:
|
130 |
+
"""
|
131 |
+
pass
|
132 |
+
|
133 |
+
|
134 |
def reset_user_input():
|
135 |
return gr.update(value='')
|
136 |
|
137 |
|
138 |
+
def reset_state(system):
|
139 |
+
return [], [{"role": "system", "content": system}]
|
140 |
+
|
141 |
|
142 |
+
system_list = [
|
143 |
+
"You are a helpful assistant.",
|
144 |
+
"你是一个导游。",
|
145 |
+
"你是一个英语老师。",
|
146 |
+
"你是一个程序员。",
|
147 |
+
"你是一个心理咨询师。",
|
148 |
+
]
|
149 |
|
150 |
"""
|
151 |
TODO: 使用说明
|
|
|
|
|
152 |
"""
|
153 |
with gr.Blocks() as demo:
|
154 |
+
# Knowledge Distillation through Self Chatting
|
155 |
+
gr.HTML("""<h1 align="center">Distilling the Knowledge through Self Chatting</h1>""")
|
156 |
+
system = gr.Dropdown(
|
157 |
+
choices=system_list,
|
158 |
+
value=system_list[0],
|
159 |
+
allow_custom_value=True,
|
160 |
+
interactive=True,
|
161 |
+
label="System message"
|
162 |
+
)
|
163 |
+
chatbot = gr.Chatbot(avatar_images=("assets/man.png", "assets/bot.png"))
|
164 |
with gr.Row():
|
165 |
with gr.Column(scale=4):
|
166 |
user_input = gr.Textbox(show_label=False, placeholder="Input...", lines=10)
|
|
|
187 |
# info="Will add more animals later!"
|
188 |
),
|
189 |
|
190 |
+
history = gr.State([{"role": "system", "content": system_list[0]}])
|
191 |
+
|
192 |
+
system.change(reset_state, inputs=[system], outputs=[chatbot, history], show_progress="full")
|
193 |
|
194 |
submit_btn.click(generate_response, [user_input, chatbot, history], [chatbot, history],
|
195 |
+
show_progress="full")
|
196 |
# submit_btn.click(reset_user_input, [], [user_input])
|
197 |
|
198 |
+
clear_btn.click(reset_state, inputs=[system], outputs=[chatbot, history], show_progress="full")
|
199 |
|
200 |
+
generate_query_btn.click(generate_query, [chatbot, history], outputs=[user_input, chatbot, history],
|
201 |
+
show_progress="full")
|
202 |
|
203 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
204 |
+
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature",
|
205 |
+
info="Larger temperature increase the randomness"),
|
206 |
gr.Slider(
|
207 |
minimum=0.1,
|
208 |
maximum=1.0,
|
models/cpp_qwen2.py
CHANGED
@@ -1,36 +1,49 @@
|
|
1 |
"""
|
2 |
https://github.com/abetlen/llama-cpp-python/blob/main/examples/gradio_chat/local.py
|
3 |
https://github.com/awinml/llama-cpp-python-bindings
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
"""
|
5 |
|
6 |
from simulator import Simulator
|
7 |
-
|
8 |
-
import llama_cpp.llama_tokenizer
|
9 |
from transformers import AutoTokenizer
|
10 |
|
11 |
|
12 |
class Qwen2Simulator(Simulator):
|
13 |
|
14 |
def __init__(self, model_name_or_path=None):
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
# "Qwen/Qwen1.5-0.5B-Chat"
|
20 |
-
# ),
|
21 |
-
# verbose=False,
|
22 |
-
# )
|
23 |
-
|
24 |
-
self.hf_tokenizer = AutoTokenizer.from_pretrained("/workspace/czy/model_weights/Qwen1.5-0.5B-Chat/")
|
25 |
-
self.llm = Llama(
|
26 |
-
model_path="/workspace/xusong/huggingface/models/Qwen1.5-0.5B-Chat-GGUF/qwen1_5-0_5b-chat-q8_0.gguf",
|
27 |
-
# n_gpu_layers=-1, # Uncomment to use GPU acceleration
|
28 |
-
# seed=1337, # Uncomment to set a specific seed
|
29 |
-
# n_ctx=2048, # Uncomment to increase the context window
|
30 |
tokenizer=llama_cpp.llama_tokenizer.LlamaHFTokenizer(self.hf_tokenizer),
|
31 |
verbose=False,
|
32 |
)
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
def generate_query(self, messages):
|
36 |
"""
|
@@ -62,29 +75,42 @@ class Qwen2Simulator(Simulator):
|
|
62 |
|
63 |
|
64 |
def _generate(self, inputs):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
# stream=False
|
66 |
output = self.llm(
|
67 |
inputs,
|
68 |
max_tokens=20,
|
69 |
-
temperature=
|
70 |
-
stop=["<|im_end|>"]
|
71 |
)
|
72 |
output_text = output["choices"][0]["text"]
|
73 |
return output_text
|
74 |
|
75 |
|
76 |
|
77 |
-
bot = Qwen2Simulator(
|
78 |
|
79 |
|
80 |
if __name__ == "__main__":
|
81 |
|
82 |
-
messages = [
|
83 |
-
|
84 |
-
|
85 |
-
]
|
86 |
-
output = bot.generate_response(messages)
|
87 |
-
print(output)
|
88 |
|
89 |
messages = [
|
90 |
{"role": "system", "content": "you are a helpful assistant"},
|
|
|
1 |
"""
|
2 |
https://github.com/abetlen/llama-cpp-python/blob/main/examples/gradio_chat/local.py
|
3 |
https://github.com/awinml/llama-cpp-python-bindings
|
4 |
+
|
5 |
+
python convert_hf_to_gguf.py --outtype f16 Qwen1.5-0.5B-Chat
|
6 |
+
|
7 |
+
python convert_hf_to_gguf.py /workspace/xusong/huggingface/models/Qwen1.5-0.5B-Chat/
|
8 |
+
|
9 |
+
|
10 |
+
./llama-cli -m /workspace/xusong/huggingface/models/Qwen1.5-0.5B-Chat/Qwen1.5-0.5B-Chat-F16.gguf -p "I believe the meaning of life is" -n 128
|
11 |
+
|
12 |
+
./llama-cli -m /workspace/xusong/huggingface/models/Qwen1.5-0.5B-Chat/Qwen1.5-0.5B-Chat-F16.gguf -f prompt.txt -n 128
|
13 |
+
|
14 |
+
./llama-cli -m /workspace/xusong/huggingface/models/Qwen1.5-0.5B-Chat/Qwen1.5-0.5B-Chat-F16.gguf -p "You are a helpful assistant" -cnv
|
15 |
+
|
16 |
"""
|
17 |
|
18 |
from simulator import Simulator
|
19 |
+
import llama_cpp
|
20 |
+
# import llama_cpp.llama_tokenizer
|
21 |
from transformers import AutoTokenizer
|
22 |
|
23 |
|
24 |
class Qwen2Simulator(Simulator):
|
25 |
|
26 |
def __init__(self, model_name_or_path=None):
|
27 |
+
self.hf_tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-0.5B-Chat")
|
28 |
+
self.llm = llama_cpp.Llama.from_pretrained(
|
29 |
+
repo_id="Qwen/Qwen2-0.5B-Instruct-GGUF",
|
30 |
+
filename="*fp16.gguf",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
tokenizer=llama_cpp.llama_tokenizer.LlamaHFTokenizer(self.hf_tokenizer),
|
32 |
verbose=False,
|
33 |
)
|
34 |
|
35 |
+
### local
|
36 |
+
# self.hf_tokenizer = AutoTokenizer.from_pretrained("/workspace/xusong/huggingface/models/Qwen2-0.5B-Chat/")
|
37 |
+
# self.llm = Llama(
|
38 |
+
# model_path="/workspace/xusong/huggingface/models/Qwen2-0.5B-Chat-GGUF/qwen2-0_5b-chat-q8_0.gguf",
|
39 |
+
# # model_path="/workspace/xusong/huggingface/models/Qwen2-0.5B-Chat/Qwen2-0.5B-Chat-F16.gguf",
|
40 |
+
# # n_gpu_layers=-1, # Uncomment to use GPU acceleration
|
41 |
+
# # seed=1337, # Uncomment to set a specific seed
|
42 |
+
# # n_ctx=2048, # Uncomment to increase the context window
|
43 |
+
# tokenizer=llama_cpp.llama_tokenizer.LlamaHFTokenizer(self.hf_tokenizer),
|
44 |
+
# verbose=False,
|
45 |
+
# )
|
46 |
+
|
47 |
|
48 |
def generate_query(self, messages):
|
49 |
"""
|
|
|
75 |
|
76 |
|
77 |
def _generate(self, inputs):
|
78 |
+
"""
|
79 |
+
qwen2-0.5b-chat 有bug:有时user生成结束没有<|im_end|>,示例:
|
80 |
+
<|im_start|>system
|
81 |
+
you are a helpful assistant<|im_end|>
|
82 |
+
<|im_start|>user
|
83 |
+
hi, what your name<|im_end|>
|
84 |
+
<|im_start|>assistant
|
85 |
+
My name is Jordan<|im_end|>
|
86 |
+
<|im_start|>user # 以上是输入,以下是生成
|
87 |
+
how old are you?
|
88 |
+
<|im_start|>assistant
|
89 |
+
I am a 41-year-old man.<|im_end|>
|
90 |
+
"""
|
91 |
# stream=False
|
92 |
output = self.llm(
|
93 |
inputs,
|
94 |
max_tokens=20,
|
95 |
+
temperature=5,
|
96 |
+
stop=["<|im_end|>", "<|im_start|>"]
|
97 |
)
|
98 |
output_text = output["choices"][0]["text"]
|
99 |
return output_text
|
100 |
|
101 |
|
102 |
|
103 |
+
bot = Qwen2Simulator()
|
104 |
|
105 |
|
106 |
if __name__ == "__main__":
|
107 |
|
108 |
+
# messages = [
|
109 |
+
# {"role": "system", "content": "you are a helpful assistant"},
|
110 |
+
# {"role": "user", "content": "What is the capital of France?"}
|
111 |
+
# ]
|
112 |
+
# output = bot.generate_response(messages)
|
113 |
+
# print(output)
|
114 |
|
115 |
messages = [
|
116 |
{"role": "system", "content": "you are a helpful assistant"},
|
models/{qwen2_util.py → hf_qwen2.py}
RENAMED
@@ -4,43 +4,50 @@ from threading import Thread
|
|
4 |
from simulator import Simulator
|
5 |
|
6 |
from transformers import TextIteratorStreamer
|
|
|
7 |
|
8 |
|
9 |
class Qwen2Simulator(Simulator):
|
10 |
|
11 |
-
def
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
inputs = inputs + "<|im_start|>user\n"
|
28 |
input_ids = self.tokenizer.encode(inputs, return_tensors="pt").to(self.model.device)
|
29 |
return self._generate(input_ids)
|
30 |
# for new_text in self._stream_generate(input_ids):
|
31 |
# yield new_text
|
32 |
|
33 |
-
def generate_response(self,
|
34 |
-
messages
|
35 |
-
for _query, _response in history:
|
36 |
-
if _response is None:
|
37 |
-
pass
|
38 |
-
messages += [
|
39 |
-
{"role": "user", "content": _query},
|
40 |
-
{"role": "assistant", "content": _response},
|
41 |
-
]
|
42 |
-
messages.append({"role": "user", "content": query})
|
43 |
-
|
44 |
input_ids = self.tokenizer.apply_chat_template(
|
45 |
messages,
|
46 |
tokenize=True,
|
@@ -52,7 +59,6 @@ class Qwen2Simulator(Simulator):
|
|
52 |
# yield new_text
|
53 |
|
54 |
def _generate(self, input_ids):
|
55 |
-
|
56 |
input_ids_length = input_ids.shape[-1]
|
57 |
response = self.model.generate(input_ids=input_ids, **self.generation_kwargs)
|
58 |
return self.tokenizer.decode(response[0][input_ids_length:], skip_special_tokens=True)
|
@@ -72,14 +78,22 @@ class Qwen2Simulator(Simulator):
|
|
72 |
yield new_text
|
73 |
|
74 |
|
75 |
-
|
76 |
-
bot = Qwen2Simulator("Qwen/Qwen2-0.5B-Instruct")
|
|
|
77 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
|
|
4 |
from simulator import Simulator
|
5 |
|
6 |
from transformers import TextIteratorStreamer
|
7 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
8 |
|
9 |
|
10 |
class Qwen2Simulator(Simulator):
|
11 |
|
12 |
+
def __init__(self, model_name_or_path):
|
13 |
+
"""
|
14 |
+
在传递 device_map 时,low_cpu_mem_usage 会自动设置为 True
|
15 |
+
"""
|
16 |
+
|
17 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
|
18 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
19 |
+
model_name_or_path,
|
20 |
+
torch_dtype="auto",
|
21 |
+
device_map="auto"
|
22 |
+
)
|
23 |
+
self.model.eval()
|
24 |
+
self.generation_kwargs = dict(
|
25 |
+
do_sample=True,
|
26 |
+
temperature=0.7,
|
27 |
+
# repetition_penalty=
|
28 |
+
max_length=500,
|
29 |
+
max_new_tokens=200
|
30 |
+
)
|
31 |
+
|
32 |
+
def generate_query(self, messages):
|
33 |
+
"""
|
34 |
+
:param messages:
|
35 |
+
:return:
|
36 |
+
"""
|
37 |
+
assert messages[-1]["role"] != "user"
|
38 |
+
inputs = self.tokenizer.apply_chat_template(
|
39 |
+
messages,
|
40 |
+
tokenize=False,
|
41 |
+
add_generation_prompt=False,
|
42 |
+
)
|
43 |
inputs = inputs + "<|im_start|>user\n"
|
44 |
input_ids = self.tokenizer.encode(inputs, return_tensors="pt").to(self.model.device)
|
45 |
return self._generate(input_ids)
|
46 |
# for new_text in self._stream_generate(input_ids):
|
47 |
# yield new_text
|
48 |
|
49 |
+
def generate_response(self, messages):
|
50 |
+
assert messages[-1]["role"] == "user"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
input_ids = self.tokenizer.apply_chat_template(
|
52 |
messages,
|
53 |
tokenize=True,
|
|
|
59 |
# yield new_text
|
60 |
|
61 |
def _generate(self, input_ids):
|
|
|
62 |
input_ids_length = input_ids.shape[-1]
|
63 |
response = self.model.generate(input_ids=input_ids, **self.generation_kwargs)
|
64 |
return self.tokenizer.decode(response[0][input_ids_length:], skip_special_tokens=True)
|
|
|
78 |
yield new_text
|
79 |
|
80 |
|
81 |
+
bot = Qwen2Simulator(r"E:\data_model\Qwen2-0.5B-Instruct")
|
82 |
+
# bot = Qwen2Simulator("Qwen/Qwen2-0.5B-Instruct")
|
83 |
+
|
84 |
|
85 |
+
if __name__ == "__main__":
|
86 |
+
# messages = [
|
87 |
+
# {"role": "system", "content": "you are a helpful assistant"},
|
88 |
+
# {"role": "user", "content": "hi, what your name"}
|
89 |
+
# ]
|
90 |
+
# output = bot.generate_response(messages)
|
91 |
+
# print(output)
|
92 |
|
93 |
+
messages = [
|
94 |
+
{"role": "system", "content": "you are a helpful assistant"},
|
95 |
+
{"role": "user", "content": "hi, what your name"},
|
96 |
+
{"role": "assistant", "content": "My name is Jordan"}
|
97 |
+
]
|
98 |
+
output = bot.generate_query(messages)
|
99 |
+
print(output)
|
requirements.txt
CHANGED
@@ -2,3 +2,4 @@ huggingface_hub==0.22.2
|
|
2 |
transformers
|
3 |
torch
|
4 |
accelerate
|
|
|
|
2 |
transformers
|
3 |
torch
|
4 |
accelerate
|
5 |
+
llama-cpp-python
|