kplug / demo_corrector.py
xusong28
update
19fb2f0
raw
history blame
2.76 kB
# coding=utf-8
# author: xusong <xusong28@jd.com>
# time: 2022/8/23 17:08
import time
import torch
import gradio as gr
from transformers import FillMaskPipeline
from transformers import BertTokenizer
from kplug.modeling_kplug import KplugForMaskedLM
from pycorrector.bert.bert_corrector import BertCorrector
from pycorrector import config
from loguru import logger
device_id = 0 if torch.cuda.is_available() else -1
class KplugCorrector(BertCorrector):
def __init__(self, bert_model_dir=config.bert_model_dir, device=device_id):
super(BertCorrector, self).__init__()
self.name = 'kplug_corrector'
t1 = time.time()
model_dir = "models/pretrain/"
tokenizer = BertTokenizer.from_pretrained(model_dir)
model = KplugForMaskedLM.from_pretrained(model_dir)
self.model = FillMaskPipeline(model=model, tokenizer=tokenizer, device=device)
if self.model:
self.mask = self.model.tokenizer.mask_token
logger.debug('Loaded bert model: %s, spend: %.3f s.' % (bert_model_dir, time.time() - t1))
corrector = KplugCorrector()
error_sentences = [
'少先队员因该为老人让坐',
'机七学习是人工智能领遇最能体现智能的一个分知',
'今天心情很好',
]
def mock_data():
corrected_sent = '机器学习是人工智能领域最能体现智能的一个分知'
errs = [('七', '器', 1, 2), ('遇', '域', 10, 11)]
return corrected_sent, errs
def correct(sent):
corrected_sent, errs = corrector.bert_correct(sent)
# corrected_sent, errs = mock_data()
print("original sentence:{} => {}, err:{}".format(sent, corrected_sent, errs))
output = [{"entity": "纠错", "score": 0.5, "word": err[1], "start": err[2], "end": err[3]} for i, err in
enumerate(errs)]
return {"text": corrected_sent, "entities": output}, errs
def test():
for sent in error_sentences:
corrected_sent, err = corrector.bert_correct(sent)
print("original sentence:{} => {}, err:{}".format(sent, corrected_sent, err))
corr_iface = gr.Interface(
fn=correct,
inputs=gr.inputs.Textbox(
label="输入文本",
default="少先队员因该为老人让坐"),
outputs=[
gr.outputs.HighlightedText(
label="Output",
show_legend=True,
),
gr.outputs.JSON(
label="JSON Output"
)
],
examples=error_sentences,
title="文本纠错(Corrector)",
description='自动对汉语文本中的拼写、语法、标点等多种问题进行纠错校对,提示错误位置并返回修改建议'
)
if __name__ == "__main__":
# test()
# correct("少先队员因该为老人让坐")
corr_iface.launch()