facefeature / app.py
xtlyxt's picture
Update app.py
1423812 verified
raw
history blame
4 kB
import streamlit as st
from PIL import Image
from transformers import pipeline
import pandas as pd
import matplotlib.pyplot as plt
# Create an image classification pipeline with scores
pipe = pipeline("image-classification", model="trpakov/vit-face-expression", top_k=None)
# Streamlit app
st.title("Emotion Recognition with vit-face-expression")
# Slider example
#x = st.slider('Select a value')
#st.write(f"{x} squared is {x * x}")
# Upload images
uploaded_images = st.file_uploader("Upload images", type=["jpg", "png"], accept_multiple_files=True)
# Display thumbnail images alongside file names and sizes in the sidebar
selected_images = []
if uploaded_images:
for idx, img in enumerate(uploaded_images):
image = Image.open(img)
checkbox_key = f"{img.name}_checkbox_{idx}" # Unique key for each checkbox
# Display thumbnail image and checkbox in sidebar
st.sidebar.image(image, caption=f"{img.name} {img.size / 1024.0:.1f} KB", width=40)
selected = st.sidebar.checkbox(f"Select {img.name}", value=False, key=checkbox_key)
if selected:
selected_images.append(image)
if st.button("Predict Emotions") and selected_images:
emotions = []
if len(selected_images) == 2:
# Predict emotion for each selected image using the pipeline
results = [pipe(image) for image in selected_images]
# Display images and predicted emotions side by side
col1, col2 = st.columns(2)
for i in range(2):
predicted_class = results[i][0]["label"]
predicted_emotion = predicted_class.split("_")[-1].capitalize()
emotions.append(predicted_emotion)
col = col1 if i == 0 else col2
col.image(selected_images[i], caption=f"Predicted emotion: {predicted_emotion}", use_column_width=True)
col.write(f"Emotion Scores: {predicted_emotion}: {results[i][0]['score']:.4f}")
# Use the index to get the corresponding filename
col.write(f"Original File Name: {uploaded_images[i].name}")
# Display the keys and values of all results
st.write("Keys and Values of all results:")
col1, col2 = st.columns(2)
for i, result in enumerate(results):
col = col1 if i == 0 else col2
col.write(f"Keys and Values of results[{i}]:")
for res in result:
label = res["label"]
score = res["score"]
col.write(f"{label}: {score:.4f}")
else:
# Predict emotion for each selected image using the pipeline
results = [pipe(image) for image in selected_images]
# Display images and predicted emotions
for i, (image, result) in enumerate(zip(selected_images, results)):
predicted_class = result[0]["label"]
predicted_emotion = predicted_class.split("_")[-1].capitalize()
emotions.append(predicted_emotion)
st.image(image, caption=f"Predicted emotion: {predicted_emotion}", use_column_width=True)
st.write(f"Emotion Scores for #{i+1} Image")
st.write(f"{predicted_emotion}: {result[0]['score']:.4f}")
# Use the index to get the corresponding filename
st.write(f"Original File Name: {uploaded_images[i].name if i < len(uploaded_images) else 'Unknown'}")
# Calculate emotion statistics
emotion_counts = pd.Series(emotions).value_counts()
# Plot pie chart
st.write("Emotion Distribution (Pie Chart):")
plt.figure(figsize=(8, 6))
plt.pie(emotion_counts, labels=emotion_counts.index, autopct='%1.1f%%', startangle=140)
plt.axis('equal') # Equal aspect ratio ensures that pie is drawn as a circle.
st.pyplot()
# Plot bar chart
st.write("Emotion Distribution (Bar Chart):")
plt.figure(figsize=(10, 6))
emotion_counts.plot(kind='bar', color='skyblue')
plt.xlabel('Emotion')
plt.ylabel('Count')
plt.title('Emotion Distribution')
st.pyplot()